scholarly journals Priming in a permissive type I-C CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss

2017 ◽  
Author(s):  
Chitong Rao ◽  
Denny Chin ◽  
Alexander W. Ensminger

AbstractCRISPR-Cas is a bacterial and archaeal adaptive immune system that uses short, invader-derived sequences termed spacers to target invasive nucleic acids. Upon recognition of previously encountered invaders, the system can stimulate secondary spacer acquisitions, a process known as primed adaptation. Previous studies of primed adaptation have been complicated by intrinsically high interference efficiency of most systems against bona fide targets. As such, most primed adaptation to date has been studied within the context of imperfect sequence complementarity between spacers and targets. Here, we take advantage of a native type I-C CRISPR-Cas system in Legionella pneumophila that displays robust primed adaptation even within the context of a perfectly matched target. Using next-generation sequencing to survey acquired spacers, we observe strand bias and positional preference that are consistent with a 3′ to 5′ translocation of the adaptation machinery. We show that spacer acquisition happens in a wide range of frequencies across the plasmid, including a remarkable hotspot that predominates irrespective of the priming strand. We systematically characterize protospacer sequence constraints in both adaptation and interference and reveal extensive flexibilities regarding the protospacer adjacent motif in both processes. Lastly, in a strain with a genetically truncated CRISPR array, we observe greatly increased interference efficiency coupled with a dramatic shift away from spacer acquisition towards spacer loss. Based on these observations, we propose that the Legionella type I-C system represents a powerful model to study primed adaptation and the interplay between CRISPR interference and adaptation.

2020 ◽  
Vol 8 (5) ◽  
pp. 720 ◽  
Author(s):  
Meichen Pan ◽  
Matthew A. Nethery ◽  
Claudio Hidalgo-Cantabrana ◽  
Rodolphe Barrangou

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated cas) systems constitute the adaptive immune system in prokaryotes, which provides resistance against bacteriophages and invasive genetic elements. The landscape of applications in bacteria and eukaryotes relies on a few Cas effector proteins that have been characterized in detail. However, there is a lack of comprehensive studies on naturally occurring CRISPR-Cas systems in beneficial bacteria, such as human gut commensal Bifidobacterium species. In this study, we mined 954 publicly available Bifidobacterium genomes and identified CRIPSR-Cas systems in 57% of these strains. A total of five CRISPR-Cas subtypes were identified as follows: Type I-E, I-C, I-G, II-A, and II-C. Among the subtypes, Type I-C was the most abundant (23%). We further characterized the CRISPR RNA (crRNA), tracrRNA, and PAM sequences to provide a molecular basis for the development of new genome editing tools for a variety of applications. Moreover, we investigated the evolutionary history of certain Bifidobacterium strains through visualization of acquired spacer sequences and demonstrated how these hypervariable CRISPR regions can be used as genotyping markers. This extensive characterization will enable the repurposing of endogenous CRISPR-Cas systems in Bifidobacteria for genome engineering, transcriptional regulation, genotyping, and screening of rare variants.


2017 ◽  
Author(s):  
Luuk Loeff ◽  
Stan J.J. Brouns ◽  
Chirlmin Joo

CRISPR-Cas loci provide an RNA-guided adaptive immune system against invading genetic elements. Interference in type I systems relies on the RNA-guided surveillance complex Cascade for target DNA recognition and the trans-acting Cas3 helicase/nuclease protein for target degradation. Even though the biochemistry of CRISPR interference has been largely covered, the biophysics of DNA unwinding and coupling of the helicase and nuclease domains of Cas3 remains elusive. Here we employed single-molecule FRET to probe the helicase activity with a high spatiotemporal resolution. We show that Cas3 remains tightly associated with the target-bound Cascade complex while reeling in the target DNA using a spring-loaded mechanism. This spring-loaded reeling occurs in distinct bursts of three base pairs, that each underlie three successive 1-nt unwinding events. Reeling is highly repetitive, compensating for inefficient nicking activity of the nuclease domain. Our study reveals that the discontinuous helicase properties of Cas3 and its tight interaction with Cascade ensure well controlled degradation of target DNA only.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jochem N. A. Vink ◽  
Jan H. L. Baijens ◽  
Stan J. J. Brouns

Abstract Background The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. Results By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. Conclusions This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known.


2020 ◽  
Vol 48 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Claudio Hidalgo-Cantabrana ◽  
Rodolphe Barrangou

CRISPR-Cas constitutes the adaptive immune system of bacteria and archaea. This RNA-mediated sequence-specific recognition and targeting machinery has been used broadly for diverse applications in a wide range of organisms across the tree of life. The compact class 2 systems, that hinge on a single Cas effector nuclease have been harnessed for genome editing, transcriptional regulation, detection, imaging and other applications, in different research areas. However, most of the CRISPR-Cas systems belong to class 1, and the molecular machinery of the most widespread and diverse Type I systems afford tremendous opportunities for a broad range of applications. These highly abundant systems rely on a multi-protein effector complex, the CRISPR associated complex for antiviral defense (Cascade), which drives DNA targeting and cleavage. The complexity of these systems has somewhat hindered their widespread usage, but the pool of thousands of diverse Type I CRISPR-Cas systems opens new avenues for CRISPR-based applications in bacteria, archaea and eukaryotes. Here, we describe the features and mechanism of action of Type I CRISPR-Cas systems, illustrate how endogenous systems can be reprogrammed to target the host genome and perform genome editing and transcriptional regulation by co-delivering a minimal CRISPR array together with a repair template. Moreover, we discuss how these systems can also be used in eukaryotes. This review provides a framework for expanding the CRISPR toolbox, and repurposing the most abundant CRISPR-Cas systems for a wide range of applications.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1750-1758 ◽  
Author(s):  
James L. Wynn ◽  
Philip O. Scumpia ◽  
Robert D. Winfield ◽  
Matthew J. Delano ◽  
Kindra Kelly-Scumpia ◽  
...  

Abstract Neonates exhibit an increased risk of sepsis mortality compared with adults. We show that in contrast to adults, survival from polymicrobial sepsis in murine neonates does not depend on an intact adaptive immune system and is not improved by T cell–directed adaptive immunotherapy. Furthermore, neonates manifest an attenuated inflammatory and innate response to sepsis, and have functional defects in their peritoneal CD11b+ cells. Activation of innate immunity with either a Toll-like receptor 4 (TLR4) or TLR7/8 agonist, but not a TLR3 agonist, increased the magnitude, but abbreviated the early systemic inflammatory response, reduced bacteremia, and improved survival to polymicrobial sepsis. TLR4 agonist pretreatment enhanced peritoneal neutrophil recruitment with increased oxidative burst production, whereas the TLR7/8 agonist also enhanced peritoneal neutrophil recruitment with increased phagocytic ability. These benefits were independent of the adaptive immune system and type I interferon signaling. Improving innate immune function with select TLR agonists may be a useful strategy to prevent neonatal sepsis mortality.


2005 ◽  
Vol 110 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Steven E. Williams ◽  
Thomas I. Brown ◽  
Ali Roghanian ◽  
Jean-Michel Sallenave

Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Qudsia Tahseen

All metazoans are exposed to a wide range of microbes and have evolved complex immune defenses used to repel infectious agents. Coelomocytes play a key role in the defense reactions of most invertebrates. They are involved in important immune functions, such as phagocytosis, encapsulation, graft rejection, and inflammation, as well as the synthesis and secretion of several humoral factors especially in annelids and echinoderms. Coelomocytes in nematodes are variable in shapes from round, ovoid, cuboidal, and spindle-shaped to stellate or branched cells that are found usually at fixed positions in the pseudocoelom. Their number usually varies from 2 to 6. The model nematode,C. eleganslacks an adaptive immune system and the coelomocytes are capable of endocytosis, but their involvement in phagocytosis of bacteria seems unlikely. The aim of this review is to evaluate current knowledge on coelomocytes of invertebrates with special reference to nematodes. The morphology and structure of these coelomocytes are discussed along with their origin. Their relative positions and diversity in different nematode groups have also been discussed and illustrated.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4071-4071
Author(s):  
Cristina Skert ◽  
Manuela Fogli ◽  
Simone Perucca ◽  
Simona Fiorentini ◽  
Emirena Garrafa ◽  
...  

Abstract Abstract 4071 Introduction. Emerging trends emphasize the importance of both innate and adaptive immune system in the response against infections, and in the pathogenesis of autoimmune and graft-versus-host (GVHD) diseases. Pattern recognition receptors such as Toll-like receptors (TLRs) play a key role in the cross-talk between innate and adaptive immune system. TLRs belong to type I transmembrane glycoprotein receptor family and recognize pathogen-associated molecular patterns (PAMPs), such as common protein, carbohydrate or DNA/RNA pattern motifs. TLRs are also receptors for endogenous ligands and damaged tissue, suggesting that both pathogen-derived molecules and products of damaged tissue can trigger signals which are responsible for the regulation of innate and adaptive immune responses. Extracellular ligands are recognized by surface TLRs (TLR1,TLR2,TLR4,TLR5, and TLR6). Intracellular TLRs (TLR3,TLR7,TLR8 and TLR9) bind mainly to foreign nucleic acids and sometimes detect self DNA/RNA. Aim of the study. Very little is known about expression and function of TLRs in vivo in patients who underwent allogeneic stem cell transplantation (SCT). The aim of this study was to evaluate the expression of TLRs on lymphocytes and monocytes in relation to the onset of acute GVHD. Methods. The expression of TLRs on lymphocytes and monocytes was analysed by flow cytometry as mean fluorescence intensity at day +30 and at the onset of GVHD. Functional data were obtained by ELISA assay after TLRs activation. The cell supernatants were collected and assayed for TNF-alpha, IFN-gamma and MCP-1. Relative induction of these cytokines was calculated in relation with unstimulated controls. Results. We analyzed 17 healthy donors and 34 patients. Median age was 46 years (range, 22–64) and 22 patients were male. Acute GVHD developed in 19 patients (12 with grade >=2). Clinical and transplant characteristics did not differ in patients with and without GVHD. Lymphocytes and monocytes of patients with acute GVHD showed higher levels of TLR5 (3,5±2,3 vs1,9±1,6 p=0,03; 25,8±25,9 vs 9,0±5,0 p=0,02) and a decreased expression of TLR1 (2,5±2,8 vs 4,3±2,8 p=0,02; 21,4±21,9 vs 54,9±37,4 p=0,005) and TLR9 (63,8±30,4 vs 111,1±62,9 p=0,03; 85,3±73,9 vs 164,2±90,6 p=0,01). IFN-gamma relative induction post-stimulation of TLR2,3,4 and 9 was significantly decreased in patients with acute GVHD (p< 0,04). Conclusions. TLRs show a different profile of expression in patients with acute GVHD in comparison with patients without it. These results suggest that the innate immune response via TLRs activation could be involved in the development of GVHD. In particular, a decreased expression of TLR-9 (receptor of hypomethylated DNA) on lymphocytes and monocytes can promote TLR-7 activation, inducing type I interferons and other pro-inflammatory cytokines. TLR-1 and −5, which are ligands for bacterial cell wall, could also be involved in the pathogenesis of GVHD. Moreover, acute GVHD negatively correlates with IFN-gamma production upon TLR2,3,4 and 9 activation. The assessment of a larger number of patients could be useful to understand the complex interplay among pathogens, self or non-self DNA and RNA, and the immune system. Disclosures: No relevant conflicts of interest to declare.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Jacob Bourgeois ◽  
David W. Lazinski ◽  
Andrew Camilli

ABSTRACT The prokaryotic adaptive immune system CRISPR/Cas serves as a defense against bacteriophage and invasive nucleic acids. A type I-E CRISPR/Cas system has been detected in classical biotype isolates of Vibrio cholerae, the causative agent of the disease cholera. Experimental characterization of this system revealed a functional immune system that operates using a 5′-TT-3′ protospacer-adjacent motif (PAM) for interference. However, several designed spacers against the 5′-TT-3′ PAM do not interfere as expected, indicating that further investigation of this system is necessary. In this study, we identified additional conserved sequences, including a pyrimidine in the 5′ position of the spacer and a purine in the complementary position of the protospacer using 873 unique spacers and 2,267 protospacers mined from CRISPR arrays in deposited sequences of V. cholerae. We present bioinformatic evidence that during acquisition the protospacer purine is captured in the prespacer and that a 5′-RTT-3′ PAM is necessary for spacer acquisition. Finally, we demonstrate experimentally, by designing and manipulating spacer and cognate PAMs in a plasmid conjugation assay, that a 5′-RTT-3′ PAM is necessary for CRISPR interference, and we discover functional consequences for spacer efficacy related to the identity of the 5′ spacer pyrimidine. IMPORTANCE Bacterial CRISPR/Cas systems provide immunity by defending against phage and other invading elements. A thorough comprehension of the molecular mechanisms employed by these diverse systems will improve our understanding of bacteriophage-bacterium interactions and bacterial adaptation to foreign DNA. The Vibrio cholerae type I-E system was previously identified in an extinct classical biotype and was partially characterized for its function. Here, using both bioinformatic and functional assays, we extend that initial study. We have found that the type I-E system still exists in modern strains of V. cholerae. Furthermore, we defined additional sequence elements both in the CRISPR array and in target DNA that are required for immunity. CRISPR/Cas systems are now commonly used as precise and powerful genetic engineering tools. Knowledge of the sequences required for CRISPR/Cas immunity is a prerequisite for the effective design and experimental use of these systems. Our results greatly facilitate the effective use of one such system. Furthermore, we provide a publicly available software program that assists in the detection and validation of CRISPR/Cas immunity requirements when such a system exists in a bacterial species.


2021 ◽  
Vol 14 ◽  
Author(s):  
Francesca Bufalieri ◽  
Irene Basili ◽  
Lucia Di Marcotullio ◽  
Paola Infante

Glioblastoma (GB) is an incurable form of brain malignancy in an adult with a median survival of less than 15 months. The current standard of care, which consists of surgical resection, radiotherapy, and chemotherapy with temozolomide, has been unsuccessful due to an extensive inter- and intra-tumoral genetic and molecular heterogeneity. This aspect represents a serious obstacle for developing alternative therapeutic options for GB. In the last years, immunotherapy has emerged as an effective treatment for a wide range of cancers and several trials have evaluated its effects in GB patients. Unfortunately, clinical outcomes were disappointing particularly because of the presence of tumor immunosuppressive microenvironment. Recently, anti-cancer approaches aimed to improve the expression and the activity of RIG-I-like receptors (RLRs) have emerged. These innovative therapeutic strategies attempt to stimulate both innate and adaptive immune responses against tumor antigens and to promote the apoptosis of cancer cells. Indeed, RLRs are important mediators of the innate immune system by triggering the type I interferon (IFN) response upon recognition of immunostimulatory RNAs. In this mini-review, we discuss the functions of RLRs family members in the control of immune response and we focus on the potential clinical application of RLRs agonists as a promising strategy for GB therapy.


Sign in / Sign up

Export Citation Format

Share Document