scholarly journals Optimization and functionalization of red-shifted rhodamine dyes

Author(s):  
Jonathan B. Grimm ◽  
Ariana N. Tkachuk ◽  
Heejun Choi ◽  
Boaz Mohar ◽  
Natalie Falco ◽  
...  

ABSTRACTExpanding the palette of fluorescent dyes is vital for pushing the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore due to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups.

2020 ◽  
Vol 3 (6) ◽  
pp. 3846-3858 ◽  
Author(s):  
Ming-Ho Liu ◽  
Tzu-Chun Chen ◽  
Juvinch R. Vicente ◽  
Chun-Nien Yao ◽  
Yu-Chi Yang ◽  
...  

2016 ◽  
Vol 63 (237) ◽  
pp. 17-21
Author(s):  
WING S. CHAN ◽  
MERLIN L. MAH ◽  
RYAN C. BAY ◽  
JOSEPH J. TALGHADER

ABSTRACTA new instrument for high-resolution optical logging has been built and tested in Antarctica. Its purpose is to obtain records of volcanic products and other scattering features, such as bubbles and impurities, preserved in polar ice sheets, and it achieves this by using long wavelength near-infrared light that is absorbed by the ice before many scattering events occur. Longer wavelengths ensure that the return signal is composed primarily of a single or few backscattering event(s) that limit its spatial spread. The compact optical logger features no components on its body that draw power, which minimizes its size and weight. A prototype of the logger was built and tested at Siple Dome A borehole, and the results were correlated with prior optical logging profiles and records of volcanic products from collected ice core samples.


Synlett ◽  
2020 ◽  
Vol 31 (12) ◽  
pp. 1129-1134 ◽  
Author(s):  
Weiping Wang ◽  
Wen Lv

Photolysis reactions are widely utilized to release desired molecules under the control of light irradiation in the fields of photochemistry, biology, and drug delivery. In biological and medical applications, it is highly desired to increase the excitation wavelength for activating photolysis reactions, since the long-wavelength light (red or near-infrared light) has deep tissue penetration depth and low photocytotoxicity. Here, we briefly summarize current strategies of achieving long-wavelength light-excitable photolysis. We highlight our recently developed strategy of one-photon upconversion-like photolysis. Compared with the multiphoton upconversion-based photolysis, the one-photon strategy has a simpler energy transfer process and a higher ­energy utilization efficiency, providing a new path of activating photolysis reactions with increased excitation wavelength and photolysis quantum yield.


2011 ◽  
Vol 216 ◽  
pp. 327-331
Author(s):  
Hong Wang ◽  
Jan Guo Cui ◽  
Yang Yang Liu ◽  
Guo Ming Chen ◽  
Sheng Ping Liu

The microcirculation plays a crucial role in the interaction between blood and tissues in physiological pathophysiological pharmacological and clinical states. Despite its significant role in numerous diseases including, hypertension diabetes, sepsis or multiple organ failure, visible and near-infrared light, offer a window into human and animal tissues due to reduced scattering and absorption. We review orthogonal polarization spectral (OPS) imaging method for direct visualization and quantitative assessment of human microcirculation at the bedside are limited. OPS imaging is a relatively new noninvasive method for assessment of human microcirculation without using fluorescent dyes. Recent clinical studies using OPS imaging in various pathological states have shown a wide spectrum of different clinical applications with evident impact on the diagnosis, treatment or prognosis assessment. Thus, there is a great effort to validate OPS imaging for various clinical purposes. The principles of OPS imaging, validation studies, its advantages, limitations, methods of quantitative assessment and current experience in clinical practice are also discussed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 383-383
Author(s):  
Gwenda J. Graham ◽  
Eiichi Tanaka ◽  
Alec M. De Grand ◽  
Rita G. Laurence ◽  
Kozo Hoshino ◽  
...  

Abstract Direct visualization of thrombus formation in real-time is limited by the fact that the vasculature is a closed system. Imaging of thrombi within arterioles and venules of small animals has been accomplished using fluorescent dyes that emit light in the visible spectrum. However, these agents are not able to penetrate large, thick-walled blood vessels and are therefore unable to detect thrombi in clinically important sites such as coronary, carotid, and femoral vessels. Near infrared light (NIR, 700–900 nm) demonstrates enhanced tissue penetration and less light scatter than visible light. By labeling platelets with IR-786, a heptamethine indocyanine-type fluorophore that emits NIR light, we have developed a reagent capable of detecting thrombi within thick-walled vessels of large animals. Optimal platelet loading occurred at 2 μM IR-786, resulting in an accumulation of 3 ×106 molecules/platelet. Normal platelet function was demonstrated by platelet aggregation and P-selectin surface expression studies. Clearance studies in 35 Kg Yorkshire pigs showed that IR-786-labeled platelets circulated for >2.5 h following infusion. IR-786-labeled platelets were next used in conjunction with an integrated NIR fluorescence video imaging system to digitally record thrombus formation in large vessels of pigs in real-time. Initially FeCl3 (oxidant injury) was utilized to induce clot formation in surgically exposed femoral arteries and IR-786-labeled platelets were shown to accumulate at the injury site with a signal to background ratio of 4.4±1.7. Thrombus growth was similarly detected and quantitated in coronary, carotid, and iliac arteries and veins. To assess potential applications of IR-786-labeled platelets for thrombus detection, thrombi were monitored in real-time, and quantified with respect to size and kinetics after electrocautery-induced injury to vessels, cutaneous incisions, intravascular stent insertion and introduction of embolic coils. Thrombolysis of formed IR-786-platelet-rich clots was also evaluated by the infusion of streptokinase and heparin, demonstrating dissolution of thrombi. Two color studies using IR-786-labeled platelets in conjunction with methylene blue, a near-infrared fluorescent blood pool agent used to assess vessel patency, showed that whilst the blood pool agent was more effective for assessing vessel patency, IR-786-labeled platelets were more sensitive for detecting and localizing thrombi within vessels. In addition, IR-786-labeled platelets were able to distinguish between actively growing and stabilized thrombi. IR-786-labeled platelets not only provide a useful tool to study mechanisms of thrombus formation but also afford a means of testing new anti-thrombotics and intravascular devices in vessels approximating the size of those in which clinically relevant thrombosis occurs. In addition, these pre-clinical studies indicate the utility of IR-786-labeled platelets as a contrast agent to detect intraoperative thrombosis, a complication of approximately 1–5% of vascular surgeries.


2019 ◽  
Vol 20 (18) ◽  
pp. 4344 ◽  
Author(s):  
Eun Seon Kang ◽  
Tae Heon Lee ◽  
Yang Liu ◽  
Ki-Ho Han ◽  
Woo Kyoung Lee ◽  
...  

The long wavelength absorbing photosensitizer (PS) is important in allowing deeper penetration of near-infrared light into tumor tissue for photodynamic therapy (PDT). A suitable drug delivery vehicle is important to attain a sufficient concentration of PS at the tumor site. Presently, we developed graphene oxide (GO) nanoparticles containing long wavelength absorbing PS in the form of the chlorin derivative purpurin-18-N-ethylamine (maximum absorption wavelength [λmax] 707 nm). The GO–PS complexes comprised a delivery system in which PS was loaded by covalent and noncovalent bonding on the GO nanosheet. The two GO–PS complexes were fully characterized and compared concerning their synthesis, stability, cell viability, and dark toxicity. The GO–PS complexes produced significantly-enhanced PDT activity based on excellent drug delivery effect of GO compared with PS alone. In addition, the noncovalent GO–PS complex displayed higher photoactivity, corresponding with the pH-induced release of noncovalently-bound PS from the GO complex in the acidic environment of the cells. Furthermore, the noncovalently bound GO‒PS complex had no dark toxicity, as their highly organized structure prevented GO toxicity. We describe an excellent GO complex-based delivery system with significantly enhanced PDT with long wavelength absorbing PS, as well as reduced dark toxicity as a promising cancer treatment.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document