scholarly journals The protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study

2019 ◽  
Author(s):  
Stephen Milne ◽  
Xuan Li ◽  
Ana I Hernandez Cordero ◽  
Chen Xi Yang ◽  
Michael H Cho ◽  
...  

ABSTRACTBackgroundThere are currently no robust biomarkers of chronic obstructive pulmonary disease (COPD) risk or progression. Club cell secretory protein-16 (CC-16) is associated with the clinical expression of COPD. We aimed to determine if there is a causal effect of serum CC-16 level on COPD risk and/or progression using Mendelian randomisation (MR) analysis.MethodsWe performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study [LHS], n=3,850 and ECLIPSE, n=1,702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) in MR analysis to estimate the causal effect of serum CC-16 on COPD risk (International COPD Genetics Consortium/UK-Biobank dataset; n=35,735 cases, n=222,076 controls) and progression (change in forced expiratory volume in 1 s [FEV1] in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1,111 lung tissue samples from the Lung eQTL Study.ResultsWe identified 7 SNPs independently associated (p<5×10−8) with serum CC-16 levels; 6 of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (p=0.008) and progression (LHS only, p=0.02). Five of the SNPs were also associated with gene expression in lung tissue, including that of the CC-16-encoding gene SCGB1A1 (false discovery rate<0.1).ConclusionWe have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on COPD risk and progression. Further investigation of CC-16 as a biomarker or therapeutic target in COPD is warranted.KEY MESSAGESWhat is the key question?Can genetics help uncover a causal effect of serum CC-16 level on COPD risk and/or progression?What is the bottom line?There is a protective effect of genetically-increased serum CC-16 on both COPD risk and progression (as measured by change in FEV1 over time), which may be due to increased expression of the CC-16-encoding gene SCGB1A1 in the lung.Why read on?This is the first study to demonstrate a possible causal effect of serum CC-16 in people with COPD, and highlights the potential for CC-16 as a biomarker or therapeutic target.

Thorax ◽  
2020 ◽  
Vol 75 (11) ◽  
pp. 934-943
Author(s):  
Stephen Milne ◽  
Xuan Li ◽  
Ana I Hernandez Cordero ◽  
Chen Xi Yang ◽  
Michael H Cho ◽  
...  

BackgroundThe anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis.MethodsWe performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on ‘COPD risk’ (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and ‘COPD progression’ (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study.ResultsWe identified seven SNPs independently associated (p<5×10–8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) −0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1.ConclusionWe have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.


1992 ◽  
Vol 262 (4) ◽  
pp. L399-L404 ◽  
Author(s):  
B. P. Hackett ◽  
N. Shimizu ◽  
J. D. Gitlin

To determine the mechanisms of Clara cell secretory protein (CCSP) gene expression, a cDNA clone was isolated and used in RNA blot analysis. A single 600 bp CCSP specific transcript was detected in the developing rat lung on fetal day 18. This transcript increased in abundance during late fetal life such that adult levels were attained within 2 wk postpartum. CCSP gene expression was tissue specific, being confined to lung and trachea at all developmental stages. The abundance of CCSP mRNA in lung tissue was unchanged after the induction of lung injury in adult rats either with lipopolysaccharide or prolonged exposure to hyperoxia. In situ hybridization of lung tissue revealed that CCSP gene expression is localized to the nonciliated epithelial (Clara) cells of the bronchiolar epithelium throughout fetal and postnatal development. Taken together the results indicate that the gene for CCSP is abundantly expressed in a cell-specific fashion in the lung and suggest that analysis of such expression will be useful in elucidating the role of Clara cells in the growth and development of the bronchiolar epithelium.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Shu-Jui Kuo ◽  
Chien-Chung Huang ◽  
Chun-Hao Tsai ◽  
Horng-Chaung Hsu ◽  
Chen-Ming Su ◽  
...  

Chemokine C-C motif ligand 4 (CCL4) gene is a chemokine-encoding gene, and the polymorphism of CCL4 gene has been shown to predict risk of various diseases. We want to investigate whether the single nucleotide polymorphisms (SNPs) of the CCL4 gene can predict the risk of rheumatoid arthritis (RA). Between 2007 and 2015, we recruited 217 patients diagnosed with RA and 371 control participants. Comparative genotyping of the rs1634507, rs10491121, and rs1719153 SNPs was performed. When compared with participants with the A/A genotype of rs1719153, those with the A/T genotype were less likely to develop RA, as were those with the A/T+T/T genotype. The protective effect of the T-containing genotype was even more prominent among females. Those with A/T in rs1719153 were 56% less likely to develop RA compared with females with A/A; a similar protective effect was seen for females with the A/T+T/T genotype compared with those with A/A. The GTEx database revealed that patients carrying the T/T genotype had lower levels of CCL4 gene expression than those carrying the A/A genotype. These results indicate that the nucleotide T over the rs1719153 is associated with decreased CCL4 gene expression and decreased risk for RA.


2020 ◽  
Vol 26 ◽  
Author(s):  
Abdulqader Fadhil Abed ◽  
Yazun Bashir Jarrar ◽  
Hamzeh J Al-Ameer ◽  
Wajdy Al-Awaida ◽  
Su-Jun Lee

Background: Oxandrolone is a synthetic testosterone analogue that is widely used among bodybuilders and athletes. However, oxandrolone causes male infertility. Recently, it was found that metformin reduces the risk of infertility associated with diabetes mellitus. Aim: This study aimed to investigate the protective effects of metformin against oxandrolone-induced infertility in male rats. Methods: Rats continuously received one of four treatments (n=7) over 14 days: control DMSO administration, oxandrolone administration, metformin administration, or co-administration of oxandrolone and metformin. Doses were equivalent to those used for human treatment. Subsequently, testicular and blood samples were collected for morphological, biochemical, and histological examination. In addition, gene expression of the testosterone synthesizing enzyme CYP11A1 was analyzed in the testes using RT-PCR. Results: Oxandrolone administration induced male infertility by significantly reducing relative weights of testes by 48%, sperm count by 82%, and serum testosterone levels by 96% (ANOVA, P value < 0.05). In addition, histological examination determined that oxandrolone caused spermatogenic arrest which was associated with 2-fold downregulation of testicular CYP11A1 gene expression. However, co-administration of metformin with oxandrolone significantly ameliorated toxicological alterations induced by oxandrolone exposure (ANOVA, P value < 0.05). Conclusion: Metformin administration protected against oxandrolone-induced infertility in male rats. Further clinical studies are needed to confirm the protective effect of metformin against oxandrolone-induced infertility among athletes.


Author(s):  
Richard Culliford ◽  
Alex J. Cornish ◽  
Philip J. Law ◽  
Susan M. Farrington ◽  
Kimmo Palin ◽  
...  

Abstract Background Epidemiological studies of the relationship between gallstone disease and circulating levels of bilirubin with risk of developing colorectal cancer (CRC) have been inconsistent. To address possible confounding and reverse causation, we examine the relationship between these potential risk factors and CRC using Mendelian randomisation (MR). Methods We used two-sample MR to examine the relationship between genetic liability to gallstone disease and circulating levels of bilirubin with CRC in 26,397 patients and 41,481 controls. We calculated the odds ratio per genetically predicted SD unit increase in log bilirubin levels (ORSD) for CRC and tested for a non-zero causal effect of gallstones on CRC. Sensitivity analysis was applied to identify violations of estimator assumptions. Results No association between either gallstone disease (P value = 0.60) or circulating levels of bilirubin (ORSD = 1.00, 95% confidence interval (CI) = 0.96–1.03, P value = 0.90) with CRC was shown. Conclusions Despite the large scale of this study, we found no evidence for a causal relationship between either circulating levels of bilirubin or gallstone disease with risk of developing CRC. While the magnitude of effect suggested by some observational studies can confidently be excluded, we cannot exclude the possibility of smaller effect sizes and non-linear relationships.


2021 ◽  
Vol 19 (2) ◽  
pp. 115-122
Author(s):  
A. Hartley ◽  
C. L. Gregson ◽  
L. Paternoster ◽  
J. H. Tobias

Abstract Purpose of Review This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. Recent Findings We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Summary Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.


Author(s):  
Ron L. Peterson ◽  
Tatiana V. Tkatchenko ◽  
Nathanael D. Pruett ◽  
Christopher S. Potter ◽  
Donna F. Jacobs ◽  
...  

Author(s):  
Andrew A. Crawford ◽  
◽  
Sean Bankier ◽  
Elisabeth Altmaier ◽  
Catriona L. K. Barnes ◽  
...  

AbstractThe stress hormone cortisol modulates fuel metabolism, cardiovascular homoeostasis, mood, inflammation and cognition. The CORtisol NETwork (CORNET) consortium previously identified a single locus associated with morning plasma cortisol. Identifying additional genetic variants that explain more of the variance in cortisol could provide new insights into cortisol biology and provide statistical power to test the causative role of cortisol in common diseases. The CORNET consortium extended its genome-wide association meta-analysis for morning plasma cortisol from 12,597 to 25,314 subjects and from ~2.2 M to ~7 M SNPs, in 17 population-based cohorts of European ancestries. We confirmed the genetic association with SERPINA6/SERPINA1. This locus contains genes encoding corticosteroid binding globulin (CBG) and α1-antitrypsin. Expression quantitative trait loci (eQTL) analyses undertaken in the STARNET cohort of 600 individuals showed that specific genetic variants within the SERPINA6/SERPINA1 locus influence expression of SERPINA6 rather than SERPINA1 in the liver. Moreover, trans-eQTL analysis demonstrated effects on adipose tissue gene expression, suggesting that variations in CBG levels have an effect on delivery of cortisol to peripheral tissues. Two-sample Mendelian randomisation analyses provided evidence that each genetically-determined standard deviation (SD) increase in morning plasma cortisol was associated with increased odds of chronic ischaemic heart disease (0.32, 95% CI 0.06–0.59) and myocardial infarction (0.21, 95% CI 0.00–0.43) in UK Biobank and similarly in CARDIoGRAMplusC4D. These findings reveal a causative pathway for CBG in determining cortisol action in peripheral tissues and thereby contributing to the aetiology of cardiovascular disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


Sign in / Sign up

Export Citation Format

Share Document