scholarly journals Genome-wide transcriptomics identifies an early preclinical signature of prion infection

Author(s):  
Silvia Sorce ◽  
Mario Nuvolone ◽  
Giancarlo Russo ◽  
Andra Chincisan ◽  
Daniel Heinzer ◽  
...  

The clinical course of prion diseases is accurately predictable despite long latency periods, suggesting that prion pathogenesis is driven by precisely timed molecular events. We constructed a searchable genome-wide atlas of mRNA abundance, splicing and editing alterations during the course of disease in prion-inoculated mice. Prion infection induced transient changes in mRNA abundance and processing already at eight weeks post inoculation, well ahead of any neuropathological and clinical signs. In contrast, microglia-enriched genes displayed an increase simultaneous with the appearance of clinical symptoms, whereas neuronal-enriched transcripts remained unchanged until the very terminal stage of disease. This suggests that glial pathophysiology, rather than neuronal demise, represents the final driver of disease. The administration of young plasma attenuated the occurrence of early mRNA abundance alterations and delayed symptoms in the terminal phase of the disease. The early onset of prion-induced molecular changes might thus point to novel biomarkers and potential interventional targets.

2006 ◽  
Vol 53 (2) ◽  
pp. 399-405 ◽  
Author(s):  
Stéphane Lezmi ◽  
Frédéric Ronzon ◽  
Anna Bencsik ◽  
Alexandre Bedin ◽  
Didier Calavas ◽  
...  

To study the pathogenesis of bovine spongiform encephalopathy infection in small ruminants, two Lacaune sheep with the AA136RR154QQ171 and one with the AA136RR154RR171 genotype for the prion protein, were inoculated with a brain homogenate from a French cattle BSE case by peripheral routes. Sheep with the ARQ/ARQ genotype are considered as susceptible to prion diseases contrary to those with the ARR/ARR genotype. The accumulation of disease-associated prion protein (PrP(d)) was analysed by biochemical and immunohistochemical methods. No PrP(d) accumulation was detected in samples from the ARR/ARR sheep 2 years post inoculation. In the two ARQ/ARQ sheep that had scrapie-like clinical symptoms, PrP(d) was found in the central, sympathetic and enteric nervous systems and in lymphoid organs. Remarkably, PrP(d) was also detected in some muscle types as well as in all peripheral nerves that had not been reported previously thus revealing a widespread distribution of BSE-associated PrP(d) in sheep tissues.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Øyvind Salvesen ◽  
Arild Espenes ◽  
Malin R. Reiten ◽  
Tram T. Vuong ◽  
Giulia Malachin ◽  
...  

AbstractPrion diseases are progressive and fatal, neurodegenerative disorders described in humans and animals. According to the “protein-only” hypothesis, the normal host-encoded prion protein (PrPC) is converted into a pathological and infectious form (PrPSc) in these diseases. Transgenic knockout models have shown that PrPC is a prerequisite for the development of prion disease. In Norwegian dairy goats, a mutation (Ter) in the prion protein gene (PRNP) effectively blocks PrPC synthesis. We inoculated 12 goats (4 PRNP+/+, 4 PRNP+/Ter, and 4 PRNPTer/Ter) intracerebrally with goat scrapie prions. The mean incubation time until clinical signs of prion disease was 601 days post-inoculation (dpi) in PRNP+/+ goats and 773 dpi in PRNP+/Ter goats. PrPSc and vacuolation were similarly distributed in the central nervous system (CNS) of both groups and observed in all brain regions and segments of the spinal cord. Generally, accumulation of PrPSc was limited in peripheral organs, but all PRNP+/+ goats and 1 of 4 PRNP+/Ter goats were positive in head lymph nodes. The four PRNPTer/Ter goats remained healthy, without clinical signs of prion disease, and were euthanized 1260 dpi. As expected, no accumulation of PrPSc was observed in the CNS or peripheral tissues of this group, as assessed by immunohistochemistry, enzyme immunoassay, and real-time quaking-induced conversion. Our study shows for the first time that animals devoid of PrPC due to a natural mutation do not propagate prions and are resistant to scrapie. Clinical onset of disease is delayed in heterozygous goats expressing about 50% of PrPC levels.


2008 ◽  
Vol 89 (6) ◽  
pp. 1533-1544 ◽  
Author(s):  
Chang-Hyun Song ◽  
Hidefumi Furuoka ◽  
Chan-Lan Kim ◽  
Michiko Ogino ◽  
Akio Suzuki ◽  
...  

It is well known that anti-prion protein (PrP) monoclonal antibodies (mAbs) inhibit abnormal isoform PrP (PrPSc) formation in cell culture. Additionally, passive immunization of anti-PrP mAbs protects the animals from prion infection via peripheral challenge when mAbs are administered simultaneously or soon after prion inoculation. Thus, anti-PrP mAbs are candidates for the treatment of prion diseases. However, the effects of mAbs on disease progression in the middle and late stages of the disease remain unclear. This study carried out intraventricular infusion of mAbs into prion-infected mice before and after clinical onset to assess their ability to delay disease progression. A 4-week infusion of anti-PrP mAbs initiated at 120 days post-inoculation (p.i.), which is just after clinical onset, reduced PrPSc levels to 70–80 % of those found in mice treated with a negative-control mAb. Spongiform changes, microglial activation and astrogliosis in the hippocampus and thalamus appeared milder in mice treated with anti-PrP mAbs than in those treated with a negative-control mAb. Treatment with anti-PrP mAb prolonged the survival of mice infected with Chandler or Obihiro strain when infusion was initiated at 60 days p.i., at which point PrPSc is detectable in the brain. In contrast, infusion initiated after clinical onset prolonged the survival time by about 8 % only in mice infected with the Chandler strain. Although the effects on survival varied for different prion strains, the anti-PrP mAb could partly prevent disease progression, even after clinical onset, suggesting immunotherapy as a candidate for treatment of prion diseases.


2019 ◽  
Author(s):  
Natallia Makarava ◽  
Jennifer Chen-Yu Chang ◽  
Kara Molesworth ◽  
Ilia V. Baskakov

AbstractBackgroundChronic neuroinflammation is recognized as a major neuropathological hallmark in a broad spectrum of neurodegenerative diseases including Alzheimer’s, Parkinson’s, Frontal Temporal Dementia, Amyotrophic Lateral Sclerosis, and prion diseases. Both microglia and astrocytes exhibit region-specific homeostatic transcriptional identities, which under chronic neurodegeneration, transform into reactive phenotypes in a region- and disease-specific manner. Little is known about region-specific identity of glia in prion diseases. The current study was designed to determine whether the region-specific homeostatic signature of glia changes with the progression of prion diseases, and whether these changes occur in a region-dependent or universal manner. Also of interest was whether different prion strains give rise to different reactive phenotypes.MethodsTo answer these questions, we analyzed gene expression in thalamus, cortex, hypothalamus and hippocampus of mice infected with 22L and ME7 prion strains using Nanostring Neuroinflammation panel at subclinical, early clinical and advanced stages of the disease.ResultsWe found that at the preclinical stage of the disease, region-specific homeostatic identities were preserved. However, with the appearance of clinical signs, region-specific signatures were partially lost and replaced with a neuroinflammation signature. While the same sets of genes were activated by both prion strains, the timing of neuroinflammation and the degree of activation in different brain regions was strain-specific. Changes in astrocyte function scored at the top of activated pathways. Moreover, clustering analysis suggested that the astrocyte function pathway responded to prion infection prior to activated microglia or neuron and neurotransmission pathways.ConclusionsThe current work established neuroinflammation gene expression signature associated with prion diseases. Our results illustrate that with the disease progression, the region-specific homeostatic transcriptome signatures are replaced by region-independent neuroinflammation signature, which was common for prion strains with different cell tropism. The prion-associated neuroinflammation signature identified in the current study overlapped only partially with the microglia degenerative phenotype and the disease-associated microglia phenotype reported for animal models of other neurodegenerative diseases.


2019 ◽  
Author(s):  
Natallia Makarava ◽  
Jennifer Chen-Yu Chang ◽  
Kara Molesworth ◽  
Ilia V Baskakov

Abstract Background Chronic neuroinflammation is recognized as a major neuropathological hallmark in a broad spectrum of neurodegenerative diseases including Alzheimer’s, Parkinson’s, Frontal Temporal Dementia, Amyotrophic Lateral Sclerosis, and prion diseases. Both microglia and astrocytes exhibit region-specific homeostatic transcriptional identities, which under chronic neurodegeneration, transform into reactive phenotypes in a region- and disease-specific manner. Little is known about region-specific identity of glia in prion diseases. The current study was designed to determine whether the region-specific homeostatic signature of glia changes with the progression of prion diseases, and whether these changes occur in a region-dependent or universal manner. Also of interest was whether different prion strains give rise to different reactive phenotypes. Methods To answer these questions, we analyzed gene expression in thalamus, cortex, hypothalamus and hippocampus of mice infected with 22L and ME7 prion strains using Nanostring Neuroinflammation panel at subclinical, early clinical and advanced stages of the disease. Results We found that at the preclinical stage of the disease, region-specific homeostatic identities were preserved. However, with the appearance of clinical signs, region-specific signatures were partially lost and replaced with a neuroinflammation signature. While the same sets of genes were activated by both prion strains, the timing of neuroinflammation and the degree of activation in different brain regions was strain-specific. Changes in astrocyte function scored at the top of activated pathways. Moreover, clustering analysis suggested that the astrocyte function pathway responded to prion infection prior to activated microglia or neuron and neurotransmission pathways. Conclusions The current work established neuroinflammation gene expression signature associated with prion diseases. Our results illustrate that with the disease progression, the region-specific homeostatic transcriptome signatures are replaced by region-independent neuroinflammation signature, which was common for prion strains with different cell tropism. The prion-associated neuroinflammation signature identified in the current study overlapped only partially with the microglia degenerative phenotype and the disease-associated microglia phenotype reported for animal models of other neurodegenerative diseases.


2021 ◽  
Author(s):  
Yanyan Zhang ◽  
Junnan Ke ◽  
Jingyuan Zhang ◽  
Jinjin Yang ◽  
Huixian Yue ◽  
...  

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by the African swine fever virus (ASFV), leading to devastating economic losses in the epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and the surrounding suspected pigs. ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable due to numerous reasons. Herein, we reported another ASF vaccine candidate named SY18ΔI226R bearing a deletion of the I226R gene in replacement of an eGFP expression cassette at the right end of the viral genome. This deletion results in complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with either a dosage of 10 4.0 TCID 50 or 10 7.0 TCID 50 . An apparent viremia with the gradual decline was monitored, while the virus shedding was only occasionally detected in oral- or anal swabs. ASFV specific antibody appeared at 9 days post-inoculation. After intramuscular challenge with its parental strain ASFV SY18 on 21 days post inoculation, all the challenged pigs survived without obvious febrile or abnormal clinical signs. No viral DNA could be detected on the dissection of any tissue when viremia disappeared. These indicated that SY18ΔI226R is safe in swine and elicits a robust immunity to the virulent ASFV infection. IMPORTANCE: Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use due to several reasons, especially the ones concerning bio-safety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in the swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by an intramuscular challenge of 10 2.5 or 10 4.0 TCID 50 of its virulent parental virus. Furthermore, rarely the nucleic acid of the gene-deleted virus and its virulent parental virus was detected from oral- or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal and efficacious vaccine candidate for genotype II ASF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirotaka Yamagata ◽  
Hiroyuki Ogihara ◽  
Koji Matsuo ◽  
Shusaku Uchida ◽  
Ayumi Kobayashi ◽  
...  

AbstractThe heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic criteria (e.g., DSM-5) are only based on clinical symptoms. The discovery of blood biomarkers has the potential to change the diagnosis of MDD. The purpose of this study was to identify blood biomarkers of DNA methylation by strategically subtyping patients with MDD by onset age. We analyzed genome-wide DNA methylation of patients with adult-onset depression (AOD; age ≥ 50 years, age at depression onset < 50 years; N = 10) and late-onset depression (LOD; age ≥ 50 years, age at depression onset ≥ 50 years; N = 25) in comparison to that of 30 healthy subjects. The methylation profile of the AOD group was not only different from that of the LOD group but also more homogenous. Six identified methylation CpG sites were validated by pyrosequencing and amplicon bisulfite sequencing as potential markers for AOD in a second set of independent patients with AOD and healthy control subjects (N = 11). The combination of three specific methylation markers achieved the highest accuracy (sensitivity, 64%; specificity, 91%; accuracy, 77%). Taken together, our findings suggest that DNA methylation markers are more suitable for AOD than for LOD patients.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bodil S. Holst ◽  
Sofia Carlin ◽  
Virginie Fouriez-Lablée ◽  
Sofia Hanås ◽  
Sofie Ödling ◽  
...  

Abstract Background Enlargement of the prostate is associated with prostatic diseases in dogs, and an estimation of prostatic size is a central part in the diagnostic workup. Ultrasonography is often the method of choice, but biomarkers constitute an alternative. Canine prostate specific esterase (CPSE) shares many characteristics with human prostate specific antigen (PSA) and is related to prostate size. In men with clinical symptoms of prostatic disease, PSA concentrations are related to prostate growth. The aims of the present follow-up study were to evaluate if the concentration of CPSE is associated with future growth of the prostate, and if analysis of a panel of 16 steroids gives further information on prostatic growth. Owners of dogs included in a previous study were 3 years later contacted for a follow-up study that included an interview and a clinical examination. The prostate was examined by ultrasonography. Serum concentrations of CPSE were measured, as was a panel of steroids. Results Of the 79 dogs included at baseline, owners of 77 dogs (97%) were reached for an interview, and 22 were available for a follow-up examination. Six of the 79 dogs had clinical signs of prostatic disease at baseline, and eight of the remaining 73 dogs (11%) developed clinical signs between baseline and follow-up, information was lacking for two dogs. Development of clinical signs was significantly more common in dogs with a relative prostate size of ≥2.5 at baseline (n = 20) than in dogs with smaller prostates (n = 51). Serum concentrations of CPSE at baseline were not associated with the change in prostatic size between baseline and follow-up. Serum concentrations of CPSE at baseline and at follow-up were positively associated with the relative prostatic size (Srel) at follow-up. Concentrations of corticosterone (P = 0.024), and the class corticosteroids (P = 0.0035) were positively associated with the difference in Srel between baseline and follow-up. Conclusions The results support the use of CPSE for estimating present and future prostatic size in dogs ≥4 years, and the clinical usefulness of prostatic size for predicting development of clinical signs of prostatic disease in the dog. The association between corticosteroids and prostate growth warrants further investigation.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1137
Author(s):  
Laura García-Mendívil ◽  
Diego R. Mediano ◽  
Adelaida Hernaiz ◽  
David Sanz-Rubio ◽  
Francisco J. Vázquez ◽  
...  

Scrapie is a prion disease affecting sheep and goats and it is considered a prototype of transmissible spongiform encephalopathies (TSEs). Mesenchymal stem cells (MSCs) have been proposed as candidates for developing in vitro models of prion diseases. Murine MSCs are able to propagate prions after previous mouse-adaptation of prion strains and, although ovine MSCs express the cellular prion protein (PrPC), their susceptibility to prion infection has never been investigated. Here, we analyze the potential of ovine bone marrow-derived MSCs (oBM-MSCs), in growth and neurogenic conditions, to be infected by natural scrapie and propagate prion particles (PrPSc) in vitro, as well as the effect of this infection on cell viability and proliferation. Cultures were kept for 48–72 h in contact with homogenates of central nervous system (CNS) samples from scrapie or control sheep. In growth conditions, oBM-MSCs initially maintained detectable levels of PrPSc post-inoculation, as determined by Western blotting and ELISA. However, the PrPSc signal weakened and was lost over time. oBM-MSCs infected with scrapie displayed lower cell doubling and higher doubling times than those infected with control inocula. On the other hand, in neurogenic conditions, oBM-MSCs not only maintained detectable levels of PrPSc post-inoculation, as determined by ELISA, but this PrPSc signal also increased progressively over time. Finally, inoculation with CNS extracts seems to induce the proliferation of oBM-MSCs in both growth and neurogenic conditions. Our results suggest that oBM-MSCs respond to prion infection by decreasing their proliferation capacity and thus might not be permissive to prion replication, whereas ovine MSC-derived neuron-like cells seem to maintain and replicate PrPSc.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lesley Cheng ◽  
Camelia Quek ◽  
Xia Li ◽  
Shayne A. Bellingham ◽  
Laura J. Ellett ◽  
...  

AbstractPrion diseases are distinguished by long pre-clinical incubation periods during which prions actively propagate in the brain and cause neurodegeneration. In the pre-clinical stage, we hypothesize that upon prion infection, transcriptional changes occur that can lead to early neurodegeneration. A longitudinal analysis of miRNAs in pre-clinical and clinical forms of murine prion disease demonstrated dynamic expression changes during disease progression in the affected thalamus region and serum. Serum samples at each timepoint were collected whereby extracellular vesicles (EVs) were isolated and used to identify blood-based biomarkers reflective of pathology in the brain. Differentially expressed EV miRNAs were validated in human clinical samples from patients with human sporadic Creutzfeldt-Jakob disease (sCJD), with the molecular subtype at codon 129 either methionine-methionine (MM, n = 14) or valine-valine (VV, n = 12) compared to controls (n = 20). EV miRNA biomarkers associated with prion infection predicted sCJD with an AUC of 0.800 (85% sensitivity and 66.7% specificity) in a second independent validation cohort (n = 26) of sCJD and control patients with MM or VV subtype. This study discovered clinically relevant miRNAs that benefit diagnostic development to detect prion-related diseases and therapeutic development to inhibit prion infectivity.


Sign in / Sign up

Export Citation Format

Share Document