scholarly journals Multiplexed Single-cell Metabolic Profiles Organize the Spectrum of Cytotoxic Human T Cells

Author(s):  
Felix J. Hartmann ◽  
Dunja Mrdjen ◽  
Erin McCaffrey ◽  
David R. Glass ◽  
Noah F. Greenwald ◽  
...  

SummaryCellular metabolism regulates immune cell activation, differentiation and effector functions to the extent that its perturbation can augment immune responses. However, the analytical technologies available to study cellular metabolism lack single-cell resolution, obscuring metabolic heterogeneity and its connection to immune phenotype and function. To that end, we utilized high-dimensional, antibody-based technologies to simultaneously quantify the single-cell metabolic regulome in combination with phenotypic identity. Mass cytometry (CyTOF)-based application of this approach to early human T cell activation enabled the comprehensive reconstruction of the coordinated metabolic remodeling of naïve CD8+ T cells and aligned with conventional bulk assays for glycolysis and oxidative phosphorylation. Extending this analysis to a variety of tissue-resident immune cells revealed tissue-restricted metabolic states of human cytotoxic T cells, including metabolically repressed subsets that expressed CD39 and PD1 and that were enriched in colorectal carcinoma versus healthy adjacent tissue. Finally, combining this approach with multiplexed ion beam imaging by time-of-flight (MIBI-TOF) demonstrated the existence of spatially enriched metabolic neighborhoods, independent of cell identity and additionally revealed exclusion of metabolically repressed cytotoxic T cell states from the tumor-immune boundary in human colorectal carcinoma. Overall, we provide an approach that permits the robust approximation of metabolic states in individual cells along with multimodal analysis of cell identity and functional characteristics that can be applied to human clinical samples to study cellular metabolism how it may be perturbed to affect immunological outcomes.

2020 ◽  
Vol 12 (563) ◽  
pp. eabe6027
Author(s):  
Ioannis Zervantonakis

Single-cell metabolic state analysis reveals cytotoxic T cell activity patterns that are spatially organized in human colorectal tumors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter A. Szabo ◽  
Hanna Mendes Levitin ◽  
Michelle Miron ◽  
Mark E. Snyder ◽  
Takashi Senda ◽  
...  

Abstract Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2436-2442 ◽  
Author(s):  
Ettore Biagi ◽  
Gianpietro Dotti ◽  
Eric Yvon ◽  
Edward Lee ◽  
Martin Pule ◽  
...  

AbstractClinical benefits from monoclonal antibody therapy for B-chronic lymphocytic leukemia (B-CLL) have increased interest in developing additional immunotherapies for the disease. CD40 ligand is an accessory signal for T-cell activation and can overcome T-cell anergy. The OX40-OX40 ligand pathway is involved in the subsequent expansion of memory antigen-specific T cells. We expressed both CD40L and OX40L on B-CLL cells by exploiting the phenomenon of molecular transfer from fibroblasts overexpressing these ligands. We analyzed the effects of the modified B-CLL cells on the number, phenotype, and cytotoxic function of autologous T cells in 7 B-CLL patients. Transfer of CD40L and OX40L was observed in all and was followed by the up-regulation of B7-1 and B7-2. The culture of CD40L/OX40L-expressing B-CLL cells with autologous T cells generated CD4+/CD8+ cytotoxic T-cell lines, which secreted interferon-γ (IFN-γ) and granzyme-B/perforin in response to autologous, but not to allogeneic, B-CLL cells or to autologous T-cell blasts. CD40L or OX40L alone was insufficient to expand tumor-reactive T cells. The combination of CD40L and OX40L on B-CLL cells may allow the generation of therapeutic immune responses to B-CLL, either by active immunization with modified tumor cells or by adoptive immunotherapy with tumor-reactive autologous T cells.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 104-104
Author(s):  
Victoria Smith ◽  
Vladi Juric ◽  
Amanda Mikels-Vigdal ◽  
Chris O'Sullivan ◽  
Maria Kovalenko ◽  
...  

104 Background: Matrix metalloproteinase 9 (MMP9) acts via diverse mechanisms to promote tumor growth and metastasis, and is a key component of the immune-suppressive myeloid inflammatory milieu. We developed a monoclonal antibody (AB0046) that inhibits murine MMP9 and assessed its mechanism of action in immunocompetent mice as a single agent, or in combination with a murine anti-PDL1 antibody. Methods: An orthotopic, syngeneic tumor model (NeuT), which models MMP9-positive myeloid infiltrate, was utilized for efficacy and pharmacodynamic studies involving RNA and T cell receptor (TCR) sequencing, and flow cytometry. Enzymatic analyses were performed on T cell chemoattractant CXCR3 ligands (CXCL9, CXCL10, and CXCL11) which were subsequently evaluated in chemotaxis assays. Results: Anti-MMP9 treatment alone or in combination with an anti-PDL1 antibody decreased primary tumor growth as compared to IgG control-treated animals (56% vs 335% tumor growth increase, p = 0.0005) or anti-PDL1 alone. Profiling of tumors by RNA sequencing revealed that inhibition of MMP9 resulted in elevated expression of genes associated with immune cell activation pathways (Hallmark Interferon Gamma Response, FDR p < 0.001). Treatment with anti-MMP9 and anti-PDL1 antibodies decreased TCR clonality, with evidence of a more diverse TCR repertoire (p = 0.005). Immunophenotyping of tumor-associated T cells by flow cytometry showed that anti-MMP9 and anti-PDL1 co-treatment promoted a 2.8-fold increase in CD3+ cells in tumors (p = 0.01), which was associated with an increase in CD4+ T cells (3.2-fold increase; p = 0.006) and CD8+ T cells (2.8-fold increase; p = 0.013). In contrast, anti-MMP9 and combination treatment resulted in a decrease in tumor-associated regulatory T cells (CD25+ FoxP3+ cells, p = 0.04). MMP9 cleavage of T cell chemoattractant ligands in vitro rendered them functionally inactive for recruitment of activated primary human effector T cells. Conclusions: Inhibition of MMP9 reduces tumor burden and promotes cytotoxic T cell infiltration in a PD1-axis refractory mouse model. The combination of nivolumab and GS-5745, a humanized anti-MMP9 inhibitory antibody, is currently being evaluated in gastric cancer (NCT02864381).


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3101-3101
Author(s):  
Alexander Starodub ◽  
Sarina Anne Piha-Paul ◽  
Raghad Karim ◽  
Curtis Ruegg ◽  
Victoria Smith ◽  
...  

3101 Background: Overcoming the immune-suppressive tumor environment induced by myeloid-derived suppressor cells (MDSC) is a major challenge in immune therapy. CD33 signaling in immature myeloid cells promotes expansion of MDSC and production of immune-suppressive factors. AMV564 is a bivalent, bispecific T-cell engager that binds CD3 and CD33. Preferential binding of AMV564 to areas of high CD33 density enables selective targeting of MDSC. Ex vivo data (Cheng 2017; Blood;130:51) and an ongoing clinical trial in acute myeloid leukemia (NCT03144245) demonstrate the ability of AMV564 to deplete MDSC while sparing monocytes and neutrophils. Methods: In this 3+3 dose escalation study, patients with advanced solid tumors receive AMV564 once daily via subcutaneous (SC) injection for 2 out of 3 wks per cycle, alone or in combination with pembrolizumab (200 mg every 3 wks). Key objectives are to evaluate AMV564 safety, identify a maximum tolerated or recommended phase 2 dose, and evaluate PK, immunophenotype of myeloid and T cell compartments, and preliminary efficacy. Results: Eleven patients have been enrolled: 8 monotherapy (3 at 15 mcg/d, 5 at 50 mcg/d) and 3 combination (5 mcg/d). Tumor types include ovarian (n = 2), small bowel, gastroesophageal junction, endometrial, rectal, penile, urothelial, squamous cell carcinoma (skin), appendiceal, and non-small cell lung. AMV564 was associated with grade (G) 1-2 injection site reactions and G1-2 fevers, which were manageable with acetaminophen and diphenhydramine, as well as G2 weight gain and G3 anemia. No dose-liming toxicity has been observed in any cohort. Three monotherapy patients (15 mcg/d) were evaluable for efficacy with ≥1 on-treatment scan; 2 had SD and 1 PD per RECIST 1.1 criteria. T cell activation, as shown by redistribution from the periphery (margination), was apparent in the first week of dosing for most patients. Compensatory myelopoiesis led to initial expansion of MDSC which were then depleted by AMV564. Increased cytotoxic T cell activation and T-helper (Th) 1 response was evidenced by increased T-bet positive CD4 and CD8 cells and controlled or decreased regulatory T cells. In some patients, effector memory CD8 cell populations (Tem and Temra) were expanded. Conclusions: AMV564 is safe and tolerable when administered SC at doses of 15 mcg/d alone and 5 mcg/d in combination with pembrolizumab. AMV564 depleted MDSC populations and altered T cell profiles consistent with activation of cytotoxic T cells and a Th1 response. Clinical trial information: NCT04128423 .


2021 ◽  
Author(s):  
Jack A. Collora ◽  
Delia Pinto-Santini ◽  
Siavash Pasalar ◽  
Neal Ravindra ◽  
Carmela Ganoza ◽  
...  

AbstractDespite antiretroviral therapy (ART), HIV-1 persists in proliferating T cell clones that increase over time. To understand whether early ART affects HIV-1 persistence in vivo, we performed single-cell ECCITE-seq and profiled 89,279 CD4+ T cells in paired samples during viremia and after immediate versus delayed ART in six people in the randomized interventional Sabes study. We found that immediate ART partially reverted TNF responses while delayed ART did not. Antigen and TNF responses persisted despite immediate ART and shaped the transcriptional landscape of CD4+ T cells, HIV-1 RNA+ cells, and T cell clones harboring them (cloneHIV-1). Some HIV-1 RNA+ cells reside in the most clonally expanded cytotoxic T cell populations (GZMB and GZMK Th1 cells). CloneHIV-1+ were larger in clone size, persisted despite ART, and exhibited transcriptional signatures of antigen, cytotoxic effector, and cytokine responses. Using machine-learning algorithms, we identified markers for HIV-1 RNA+ cells and cloneHIV-1+ as potential therapeutic targets. Overall, by combining single-cell immune profiling and T cell expansion dynamics tracking, we identified drivers of HIV-1 persistence in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3886-3886
Author(s):  
Hong Yin ◽  
Yi Huo ◽  
Zhen Sheng ◽  
Chi-Ming Li ◽  
Daniel C Ellwanger ◽  
...  

Introduction Blinatumomab, a bi-specific T cell engager (BiTE®) combining the VH and VL domains of two antibodies against human CD19 and CD3, has been approved by U.S. Food and Drug Administration (FDA) for the treatment of patients with relapsed or refractory B precursor ALL (r/r B-ALL) for its clinical benefit demonstrated in different clinical trials. Clinical trials have also shown that there are still patients refractory to blinatumomab. It is thus important to understand the resistance mechanisms. Blinatumomab connects patients' autologous T cells and target cells to form immunologic synapse which potently triggers the activation signaling cascades in T cells and guides T cells to recognize and induce perforin/granzyme-mediated lysis of CD19+ B-ALL cells. Previous studies showed blinatumomab-mediated cytotoxicity involves different T cell subpopulations. But response of each T cell subpopulation to blinatumomab treatment remained largely unknown. Methods and Results In this study, we used 10X Genomics based single cell RNA sequencing to analyze the transcriptome of single T cells before and after blinatumomab treatment. First, ex vivo blinatumomab cytotoxicity model was established, in which healthy PBMCs were used as effector cells and cocultured with target cells (RS4;11 cells or SUP-B15 cells) at an effector-to-target cell ratio of 10:1 with 0.1 ng/mL blinatumomab. Then, PBMCs and BMMCs from 2 B-ALL patients were cultured with 10 ng/mL blinatumomab. Cells from both ex vivo model and patient samples were sequenced using 10X Genomics platform. In total, transcriptome of 17920 single T cells from the ex vivo model and 2271 single T cells from patient sample were analyzed. Based on T cell trajectory analysis, we identified four distinct populations of blinatumomab-activated T cells, which were derived from CD8+ effector memory T (TEM) cells, CD4+ central memory (TCM) cells, naïve T cells and Tregs, respectively. The differentially expressed genes in activated clusters were analyzed to reflect T cell activation mechanisms. The result showed blinatumomab induced the upregulation of aerobic glycolysis pathway (PKM, PGAM1, ENO1, GAPDH and LDHA), cytoskeleton dynamics pathway (ACTD1, ACTB, NME1 and TUBA1B), IFN-responsive pathway (GBP1, PSME2, WARS, CXCL10 and STAT1), and the upregulation of well-known immune-related genes (TNFRSF4, TNFRSF18, LAG3, CD69, IL2RA, MIR155HG, BATF, SH2D2A, LTA, NFKBIA and NDFIP2). We found blinatumomab-activated CD8+ TEM cells showed stronger cytotoxic capability than other activated populations with specific production of cytotoxic factors (PRF1, IFNG and FASLG) and cytokines (CCL2, CCL3, CCL3L1, CCL4, CCL4L2, CCL8, XCL1, XCL2, TNFSF9 and TNFSF14). Last, differential gene expression analysis revealed that co-stimulatory (TNFRSF4,TNFRSF9 and TNFRSF18) and co-inhibitory receptors (LAG3 and TIGIT) were similarly up-regulated in clusters activated from memory and naïve T cells, indicating ligand dependent T cell functional outcomes induced by blinatumomab. Conclusion In summary, we used single cell sequencing to map the blinatumomab-mediated T cell activation state transition and reveal the molecular changes in different T cell subpopulations. Memory T cells, naïve T cells and Tregs were identified functional populations after blinatumomab treatment. CD8+ TEM accounted for the majority of blinatumomab-induced cytotoxicity. Furthermore, T cell co-regulatory receptors were identified as potential targets accountable for blinatumomab sensitivity or resistance mechanisms. The study demonstrated that the collected cellular transcriptional profiles can serve as resource to explore novel strategies to enhance the efficacy of blinatumomab. Disclosures Yin: Amgen: Employment. Huo:Amgen: Employment. Sheng:Amgen: Employment. Li:Amgen: Employment. Ellwanger:Amgen: Employment. Lu:Amgen: Employment. Homann:Amgen: Employment. Wang:Amgen: Employment. Ren:Ruijin hospital: Employment.


2019 ◽  
Vol 8 (11) ◽  
pp. 1989 ◽  
Author(s):  
Tom J. Harryvan ◽  
Els M. E. Verdegaal ◽  
James C. H. Hardwick ◽  
Lukas J. A. C. Hawinkels ◽  
Sjoerd H. van der Burg

The introduction of a wide range of immunotherapies in clinical practice has revolutionized the treatment of cancer in the last decade. The majority of these therapeutic modalities are centered on reinvigorating a tumor-reactive cytotoxic T-cell response. While impressive clinical successes are obtained, the majority of cancer patients still fail to show a clinical response, despite the fact that their tumors express antigens that can be recognized by the immune system. This is due to a series of other cellular actors, present in or attracted towards the tumor microenvironment, including regulatory T-cells, myeloid-derived suppressor cells and cancer-associated fibroblasts (CAFs). As the main cellular constituent of the tumor-associated stroma, CAFs form a heterogeneous group of cells which can drive cancer cell invasion but can also impair the migration and activation of T-cells through direct and indirect mechanisms. This singles CAFs out as an important next target for further optimization of T-cell based immunotherapies. Here, we review the recent literature on the role of CAFs in orchestrating T-cell activation and migration within the tumor microenvironment and discuss potential avenues for targeting the interactions between fibroblasts and T-cells.


2020 ◽  
Vol 8 (Suppl 1) ◽  
pp. A5.1-A5
Author(s):  
Chuan Li ◽  
Yee Peng Phoon ◽  
Keaton Karlinsey ◽  
Ye Tian ◽  
Samjhana Thapaliya ◽  
...  

BackgroundImmune checkpoint blockade (ICB) has greatly advanced the treatment of melanoma. A key component of ICB is the stimulation of CD8+ T cells in the tumor. However, ICB therapy only benefits a subset of patients and a reliable prediction method that does not require invasive biopsies is still a major challenge in the field.MethodsWe conducted a set of comprehensive single-cell transcriptomic analyses of CD8+ T cells in the peripheral blood (mPBL) and tumors (mTIL) from 8 patients with metastatic melanoma.ResultsCompared to circulating CD8+ T cells from healthy donors (hPBL), mPBLs contained subsets resembling certain features of mTIL. More importantly, three clusters (2, 6 and 15) were represented in both mPBL and mTIL. Cluster 2 was the major subset of the majority of hPBL, which phenocopied hallmark parameters of resting T cells. Cluster 6 and 15 were uniquely presented in melanoma patients. Cluster 15 had the highest PD-1 levels, with elevated markers of both activation and dysfunction/exhaustion; while Cluster 6 was enriched for ‘dormant’ cells with overall toned-down transcriptional activity except PPAR signaling, a known suppressor for T cell activation. Interestingly, unlike other mTIL clusters that would classically be defined as exhausted, Cluster 15 exhibited the highest metabolic activity (oxidative-phosphorylation and glycolysis). We further analyzed total sc-transcriptomics using cell trajectory algorithms and identified that these three clusters were the most distinct subtypes of CD8 T cells from each other, representing: resting (cluster 2), metabolically active-dysfunctional (cluster 15), and dormant phenotypes (cluster 6). Further, three unique intracellular programs in melanoma drive the transition of resting CD8+ T cells (cluster 2) to both metabolic/dysfunctional (cluster 15) and dormant states (cluster 6) that are unique to tumor bearing conditions. Based on these high-resolution analyses, we developed original algorithms to build a novel ICB response predictive model using immune-blockade co-expression gene patterns. The model was trained and tested using previously published GEO datasets containing CD8 T cells from anti-PD-1 treated patients and presented an AUC of 0.82, with 92% and 89% accuracy of ICB response in the two datasets.ConclusionsWe identified and analyzed unique populations of CD8+ T cells in circulation and tumor using high-resolution single-cell transcriptomics to define the landscape of CD8+ T cell states, revealing critical subsets with shared features in PBLs and TILs. Most importantly, we established an innovative model for ICB response prediction by using peripheral blood lymphocytes.Ethics ApprovalThis study was performed under an IRB approved protocol.


Sign in / Sign up

Export Citation Format

Share Document