scholarly journals Prophages are associated with extensive CRISPR-Cas auto-immunity

Author(s):  
Franklin L. Nobrega ◽  
Hielke Walinga ◽  
Bas E. Dutilh ◽  
Stan J.J. Brouns

ABSTRACTCRISPR-Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR-Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100,000 bacterial genomes. We found STS in all CRISPR-Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR-Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR-Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects. The mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages, and contribute both to viral dissemination and bacterial diversification.

2020 ◽  
Vol 48 (21) ◽  
pp. 12074-12084
Author(s):  
Franklin L Nobrega ◽  
Hielke Walinga ◽  
Bas E Dutilh ◽  
Stan J J Brouns

Abstract CRISPR–Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR–Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100 000 bacterial genomes. We found STS in all CRISPR–Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR–Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR–Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects as mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 770
Author(s):  
Kinga Chlebicka ◽  
Emilia Bonar ◽  
Piotr Suder ◽  
Emeline Ostyn ◽  
Brice Felden ◽  
...  

Type I toxin–antitoxin (TA) systems are widespread genetic modules in bacterial genomes. They express toxic peptides whose overexpression leads to growth arrest or cell death, whereas antitoxins regulate the expression of toxins, acting as labile antisense RNAs. The Staphylococcus aureus (S. aureus) genome contains and expresses several functional type I TA systems, but their biological functions remain unclear. Here, we addressed and challenged experimentally, by proteomics, if the type I TA system, the SprG1/SprF1 pair, influences the overall gene expression in S. aureus. Deleted and complemented S. aureus strains were analyzed for their proteomes, both intracellular and extracellular, during growth. Comparison of intracellular proteomes among the strains points to the SprF1 antitoxin as moderately downregulating protein expression. In the strain naturally expressing the SprG1 toxin, cytoplasmic proteins are excreted into the medium, but this is not due to unspecific cell leakages. Such a toxin-driven release of the cytoplasmic proteins may modulate the host inflammatory response that, in turn, could amplify the S. aureus infection spread.


2020 ◽  
Vol 20 (7) ◽  
pp. 518-523
Author(s):  
Rugül Köse Çinar

Objective: Neuroserpin is a serine protease inhibitor predominantly expressed in the nervous system functioning mainly in neuronal migration and axonal growth. Neuroprotective effects of neuroserpin were shown in animal models of stroke, brain, and spinal cord injury. Postmortem studies confirmed the involvement of neuroserpin in Alzheimer’s disease. Since altered adult neurogenesis was postulated as an aetiological mechanism for bipolar disorder, the possible effect of neuroserpin gene expression in the disorder was evaluated. Methods: Neuroserpin mRNA expression levels were examined in the peripheral blood of bipolar disorder type I manic and euthymic patients and healthy controls using the polymerase chain reaction method. The sample comprised of 60 physically healthy, middle-aged men as participants who had no substance use disorder. Results: The gene expression levels of neuroserpin were found lower in the bipolar disorder patients than the healthy controls (p=0.000). The neuroserpin levels did not differ between mania and euthymia (both 96% down-regulated compared to the controls). Conclusion: Since we detected differences between the patients and the controls, not the disease states, the dysregulation in the neuroserpin gene could be interpreted as a result of the disease itself.


2013 ◽  
Vol 20 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
Michael H. Kogut ◽  
Kenneth J. Genovese ◽  
Haiqi He ◽  
Christina L. Swaggerty ◽  
Yiwei Jiang

ABSTRACTWe have been investigating modulation strategies tailored around the selective stimulation of the host's immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soil bacterium,Brevibacillus texasporus. These peptides have immune modulatory properties that enhance both leukocyte functional efficiency and leukocyte proinflammatory cytokine and chemokine mRNA transcription activitiesin vitro. In addition, when provided as a feed additive for just 4 days posthatch, BT peptides significantly induce a concentration-dependent protection against cecal and extraintestinal colonization bySalmonella entericaserovar Enteritidis. In the present studies, we assessed the effects of feeding BT peptides on transcriptional changes on proinflammatory cytokines, inflammatory chemokines, and Toll-like receptors (TLR) in the ceca of broiler chickens with and withoutS. Enteritidis infection. After feeding a BT peptide-supplemented diet for the first 4 days posthatch, chickens were then challenged withS. Enteritidis, and intestinal gene expression was measured at 1 or 7 days postinfection (p.i.) (5 or 11 days of age). Intestinal expression of innate immune mRNA transcripts was analyzed by quantitative real-time PCR (qRT-PCR). Analysis of relative mRNA expression showed that a BT peptide-supplemented diet did not directly induce the transcription of proinflammatory cytokine, inflammatory chemokine, type I/II interferon (IFN), or TLR mRNA in chicken cecum. However, feeding the BT peptide-supplemented diet primed cecal tissue for increased (P≤ 0.05) transcription of TLR4, TLR15, and TLR21 upon infection withS. Enteritidis on days 1 and 7 p.i. Likewise, feeding the BT peptides primed the cecal tissue for increased transcription of proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, IL-18, type I and II IFNs) and inflammatory chemokine (CxCLi2) in response toS. Enteritidis infection 1 and 7 days p.i. compared to the chickens fed the basal diet. These small cationic peptides may prove useful as alternatives to antibiotics as local immune modulators in neonatal poultry by providing prophylactic protection againstSalmonellainfections.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lorena Leticia Peixoto de Lima ◽  
Allysson Quintino Tenório de Oliveira ◽  
Tuane Carolina Ferreira Moura ◽  
Ednelza da Silva Graça Amoras ◽  
Sandra Souza Lima ◽  
...  

Abstract Background The HIV-1 epidemic is still considered a global public health problem, but great advances have been made in fighting it by antiretroviral therapy (ART). ART has a considerable impact on viral replication and host immunity. The production of type I interferon (IFN) is key to the innate immune response to viral infections. The STING and cGAS proteins have proven roles in the antiviral cascade. The present study aimed to evaluate the impact of ART on innate immunity, which was represented by STING and cGAS gene expression and plasma IFN-α level. Methods This cohort study evaluated a group of 33 individuals who were initially naïve to therapy and who were treated at a reference center and reassessed 12 months after starting ART. Gene expression levels and viral load were evaluated by real-time PCR, CD4+ and CD8+ T lymphocyte counts by flow cytometry, and IFN-α level by enzyme-linked immunosorbent assay. Results From before to after ART, the CD4+ T cell count and the CD4+/CD8+ ratio significantly increased (p < 0.0001), the CD8+ T cell count slightly decreased, and viral load decreased to undetectable levels in most of the group (84.85%). The expression of STING and cGAS significantly decreased (p = 0.0034 and p = 0.0001, respectively) after the use of ART, but IFN-α did not (p = 0.1558). Among the markers evaluated, the only markers that showed a correlation with each other were STING and CD4+ T at the time of the first collection. Conclusions ART provided immune recovery and viral suppression to the studied group and indirectly downregulated the STING and cGAS genes. In contrast, ART did not influence IFN-α. The expression of STING and cGAS was not correlated with the plasma level of IFN-α, which suggests that there is another pathway regulating this cytokine in addition to the STING–cGAS pathway.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.2-1095
Author(s):  
A. S. Siebuhr ◽  
S. F. Madsen ◽  
M. Karsdal ◽  
A. C. Bay-Jensen ◽  
P. Juhl

Background:Systemic sclerosis has vascular, inflammatory and fibrotic components, which may be associated with different growth factors and cytokines. Platelet derived growth factor (PDGF) is associated with the vasculature, whereas tumor necrosis factor beta (TGFβ) is associated with inflammation and fibrosis. We have developed a fibroblast model system of dermal fibrosis for anti-fibrotic drugs testing, but the effect of the fibroblasts mechanistic properties are unknown.Objectives:We investigated different mechanical capacities of PDGF and TGFβ treated human healthy dermal fibroblasts in the SiaJ setting.Methods:Primary human healthy dermal fibroblasts were grown in DMEM medium containing 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid for up to 17 days. A wound was induced by scratching the cells at 0, 1, 3 or 7 days after treatment initiation. Wound closure was followed for 3 days. Contraction capacity was tested by creating gels of human fibroblasts produced collagens containing dermal fibroblasts and contraction was assessed at day 2 by calculating the percentage of gel size to total well size. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Gene expression was analyzed after 2 days in culture. Statistical analyses included One-way ANOVA and student’s t-test.Results:Generally, PDGF closed the wound in half the time of w/o and TGFβ, when treatment and cells are added concurrently or scratched one day after treatment initiation. When treatments were added 3 or 7 days prior to scratch, the cells treated with PDGF had proliferated to a higher degree than w/o and TGFβ. A consequence of this, was that when cells were scratch the sheet of cells produced was lifted from the bottom and fold over itself, leaving a much greater scratch than in the other treatments. However, despite this increased gap the PDGF treated cells closed the wound at the same time as w/o and TGFβ, confirming the results of the cells scratched at day 0 and 1.Inhibition of contraction by ML-7 of otherwise untreated cells inhibited contraction significantly compared to untreated cells alone (p=0.0009). Contraction was increased in both TGFβ and PDGF treated cells compared to untreated cells (both p<0.0001). TGFβ+ ML-7 inhibited the contraction to the level of w/o (p=0.0024), which was only 35% of ML-7 alone. In the contraction study the cells were terminated after 2 days of culture, thus prior to when biomarker of ECM remodeling is usually assessed. However, FBN-C was detectable and a significant release of fibronectin by TGFβ and PDGF compared to w/o was found in the supernatant (both p<0.0001). The gene expression of FBN was only increased with TGFβ (p<0.05) and not PDGF. ML-7 alone tended to decrease FBN-C and in combination with TGFβ the FBN level was significantly decreased compared to TGFβ alone (p<0.0001). However, the level of TGFβ+ML-7 was significantly higher than ML-7 alone (p=0.038).TGFβ increased the gene expression of most genes assessed, except Col6a1. PDGF increased the gene expression of Col3a1, Col5a1 and Col6a1 above the critical fold change of 2, but only significantly in Col5a1 and Col6a1 (both p<0.05).Conclusion:This study demonstrates that TGFβ and PDGF have different mechanical capacities in human healthy dermal fibroblasts; TGFβ increased gene expression of ECM related genes, such as collagens and have increased FBN release in the supernatant already 2 days after initial treatment. PDGF has increased contraction, proliferation and migratory capacities and less expression of ECM related genes and proteins.Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Sofie Falkenløve Madsen: None declared, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S., Pernille Juhl Employee of: Nordic Bioscience


2003 ◽  
Vol 39 (6) ◽  
pp. 901-909 ◽  
Author(s):  
Marjanka C Luijerink ◽  
Saskia M.M Jacobs ◽  
Ellen A.C.M van Beurden ◽  
Leander P Koornneef ◽  
Leo W.J Klomp ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 656
Author(s):  
Giulia Foggi ◽  
Francesca Ciucci ◽  
Maria Conte ◽  
Laura Casarosa ◽  
Andrea Serra ◽  
...  

This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.


Sign in / Sign up

Export Citation Format

Share Document