scholarly journals Situation of antibiotic resistance in Bangladesh and its association with resistance genes for horizontal transfer

2020 ◽  
Author(s):  
Kazi Sarjana Safain ◽  
Golam Sarower Bhuyan ◽  
Sadia Tasnim ◽  
Saad Hassan Hasib ◽  
Rosy Sultana ◽  
...  

The study investigated the spectrum of antibiotic resistance and the associated genes for aminoglycoside, macrolide and ESBL class of antibiotics using clinical isolates. A total of 430 preserved bacterial strains (Acinetobacter baumannii, n= 20; Pseudomonas aeruginosa, n= 26; Klebsiella pneumoniae, n= 42; E. coli , n= 85; Staphylococcus aureus, n= 84; Salmonella Typhi, n= 82; Enterococcus spp., n= 27; Streptococcus pneumoniae, n= 36 and CNS, n = 28) were examined. The strains were isolated from patients admitted to various tertiary hospitals of Dhaka city between 2015 and 2019 with either acute respiratory infections, wound infections, typhoid fever or diarrhea. The isolates were reconfirmed by appropriate microbiological and biochemical methods. Antimicrobial susceptibility tests were done using Kirby–Bauer disk diffusion approach. PCR amplification using resistance gene-specific primers for aminoglycoside, macrolide and ESBL class of antibiotics was done and the amplified products were confirmed by Sanger sequencing. Of the total isolates, 53% came out as MDR with 96.6% of E. coli and 90% of Staphylococcus aureus. There was a year-wise gradual increase of MDR isolates from 2015-2018 and by 2019 the increase in MDR isolates became almost 2-fold compared to 2015. Among the five ESBL genes investigated, CTXM-1 came out as the most prevalent (63%) followed by NDM-1 (22%) and E. coli isolates were the predominant reservoir of these genes. ErmB (55%) was the most frequently detected macrolide resistance gene, whereas aac ( 6 ) -Ib (35.44%) was the most prevalent aminoglycoside resistance gene and these genes were most prevalent in E. coli and P. aeruginosa isolates, respectively. CTXM-1 and ErmB (16.66%) were the most frequent partners of coexistence followed by CTXM-1 and aac ( 3 ) -II.

2015 ◽  
Vol 21 (1) ◽  
pp. 7-11
Author(s):  
Mihaela Botnarciuc ◽  
Irina Stan ◽  
Sorina Ispas

Abstract Objectives: The objective of the study is the evaluation of the actual resistance to second, third, and fourth generation cephalosporins over bacterial strains isolated from respiratory infections. The main causes for cephalosporin resistance of pathogenic and conditioned pathogen bacteria are: widespread usage, and impair immune response. Materials and methods: The analyzed specimens were throat swabs and sputum, from adult patients. The tests were performed using disk diffusion technique. We tested the following cephalosporin: From second generation: cefuroxime axetil; from third generation: cefotaxime, ceftazidime, cefpodoxime; Combinations of cephalosporins and beta-lactamase inhibitors: cefotaxime + clavulanic acid; ceftazidim + clavulanic acid; From fourth generation: cefepime; and association cefepime and clavulanic acid. Results: The following bacterial strains were isolated: Staphylococcus aureus, Streptococcus pneumoniae, Group C β-hemolytic Streptococcus, E. coli, Klebsiella pneumoniae and Proteus sp. The Group A. β-hemolytic Streptococcus isolated strains were not tested. For Staphylococcus aureus, E. coli, K. pneumoniae and Proteus, we found a high frequency resistance tocefuroxim, approximately 47%. Highest resistance to third generation cephalosporin was identified to E.coli and Klebsiella pneumoniae, especially resistant to cefotaxime, cefotaxime + clavulanic acid and ceftazidime. Conclusions: Cefpodoxime can be considered as a first election antibiotic in treating upper and lower respiratory tract infections, due to the lowest level of bacterial strain resistance, approximately 10% of the third generation cephalosporines tested. Also, cefepime may be proper in treating severe respiratory tract infections, with resistant broad-spectrum antibiotics bacterial strains. In our trial, resistance to cefepime was to a minimum low, approximately 4%, represented by the E.coli strains.


Author(s):  
Rajeena Sugumaran ◽  
Pamela David Jocksing ◽  
Nur Athirah Yusof

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are contributors to infection cases among the Asian population. S. aureus is found in the mucous lining of noses and is mainly non-pathogenic while E. coli, mostly harmless bacteria, are found in the intestine. Pathogenic strains of both bacteria have adverse effects on the elderly and younger age group of the population. Samples were collected from recreational parks around Kota Kinabalu as they are hotspots frequently visited by families with both age groups. The bacterial samples were isolated and cultured on selective media such as Baird-Parker agar (BPA), Brain Heart Infusion (BHI) agar, MacConkey agar and Eosin-Methylene Blue (EMB) agar. Morphological characteristics of bacterial growth were observed, where S. aureus had black-shiny growth in BPAand E. coli had a metallic-green sheen in EMB agar. The suspected bacteria samples were then stained and viewed under a light microscope. S. aureus was identified as gram-positive, stained violet with a circular shape and clustered  appearance. E. coli was identified as gram-negative, stained red, rod-shaped with 2 – 3 bacterial alignment. Antibiotic resistance test resulted in S. aureus and E. coli samples did not display 100% resistance among 4 antibiotics tested (ampicillin, penicillin, tetracycline and chloramphenicol). Most of the bacteria samples were a minimum inhibitory of 0.1 mg/mL of antibiotic concentration. These results provide a foundation for further research on identifying bacterial strains using molecular methods. The findings can then be used to disseminate information to the public to create awareness of potential disease outbreaks in the city.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10455
Author(s):  
Albert Bolatchiev

Background The global problem of antibiotic resistance requires the search for and development of new methods of treatment. One of the promising strategies is the use of low doses of antimicrobial peptides, in particular, human defensins HNP-1, hBD-1, and hBD-3, in combination with antibacterial drugs already used in clinical practice. This approach may be used to increase the effectiveness of conventional antibiotics. However, this requires thorough study of the effectiveness of defensins in combination with antibiotics against a large number of bacterial strains with known phenotypes of antibiotic resistance. The aim of this work was to study the antibacterial effect of HNP-1, hBD-1 and hBD-3 in combination with rifampicin or amikacin against clinical isolates of Staphylococcus aureus (n = 27) and Escherichia coli (n = 24) collected from hospitalized patients. Methods The standard checkerboard assay was used to determine minimum inhibitory concentrations (MICs) of antimicrobials. The combined microbicidal effects of two substances (defensin + conventional antibiotic) were assessed by the fractional inhibitory concentration index (FICI). Results The highest anti-staphylococcal activity (including methicillin-resistant strains) among defensins was demonstrated by hBD-3 that had MIC of 1 (0.5–4) mg/L (hereinafter, MIC values are presented as median and interquartile range). The MIC of HNP-1 against S. aureus was 4 (2–8) mg/L; the MIC of hBD-1 was 8 (4–8) mg/L. Against E. coli, the most effective was also found to be hBD-3 that had MIC of 4 (4–8) mg/L; the MIC of HNP-1 was 12 (4–32) mg/L. The combinations of HNP-1 + rifampicin and hBD-3 + rifampicin demonstrated synergistic effects against S. aureus. Against E. coli, combinations of HNP-1 + amikacin and hBD-3 + amikacin also showed synergy of action.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rong Zhang ◽  
Ning Dong ◽  
Zhangqi Shen ◽  
Yu Zeng ◽  
Jiauyue Lu ◽  
...  

Abstract Emergence of tigecycline-resistance tet(X) gene orthologues rendered tigecycline ineffective as last-resort antibiotic. To understand the potential origin and transmission mechanisms of these genes, we survey the prevalence of tet(X) and its orthologues in 2997 clinical E. coli and K. pneumoniae isolates collected nationwide in China with results showing very low prevalence on these two types of strains, 0.32% and 0%, respectively. Further surveillance of tet(X) orthologues in 3692 different clinical Gram-negative bacterial strains collected during 1994–2019 in hospitals in Zhejiang province, China reveals 106 (2.7%) tet(X)-bearing strains with Flavobacteriaceae being the dominant (97/376, 25.8%) bacteria. In addition, tet(X)s are found to be predominantly located on the chromosomes of Flavobacteriaceae and share similar GC-content as Flavobacteriaceae. It also further evolves into different orthologues and transmits among different species. Data from this work suggest that Flavobacteriaceae could be the potential ancestral source of the tigecycline resistance gene tet(X).


1999 ◽  
Vol 43 (12) ◽  
pp. 2925-2929 ◽  
Author(s):  
Lydia Bass ◽  
Cynthia A. Liebert ◽  
Margie D. Lee ◽  
Anne O. Summers ◽  
David G. White ◽  
...  

ABSTRACT Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEΔ1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markersintI1 and qacEΔ1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 andqacEΔ1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for theqacEΔ1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avianE. coli isolates of diverse genetic makeup as well as inSalmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry.


Author(s):  
A. A. Katun ◽  
A. R. Abdulmumin ◽  
M. U. Yahaya ◽  
N. K. Habeeb ◽  
A. Bala

The investigation into soil bacteria has been widely studied and becoming increasingly appreciated as an exceptional reservoir of unique naturally occurring biologically active metabolites with pharmaceutical applications. This article aimed to isolate, identify and biochemically characterize antibiotic-producing bacteria from anthill soils in the permanent site of Ibrahim Badamasi Babangida University, Lapai (IBBUL), Niger State, Nigeria. The sum of ten samples were collected from five sampling sites, the sampling was done in threefold (morning, noon and evening) and analyzed adopting standard microbiological protocols. The obtained result revealed that the total bacteria count in the morning ranges from 2.1×107 cfu/mL to 1.4×106 cfu/mL, noon count ranges from 3.1×107 to 2.6×106 cfu/mL while evening count was in the range of 2.1×107 cfu/mL to 1.7×106 cfu/mL. A total number of five (5) bacteria were isolated as Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Bacillus lentus and Micrococcus reseus. The total prevalence of the bacterial isolates in the morning, noon and evening were calculated as B. subtilis (109.08%), S. epidermidis (36.36%), M. reseus (36.36%), B. lentus (63.63%), and S. aureus (54.54%) respectively. These isolates were further assayed against Escherichia coli, Salmonella typhi, Klebsiella sp. and Staphylococcus aureus. The antibacterial outcome showed that two (2) (40%) anthill isolates exhibited antibacterial activity against three (3) tested bacteria (Escherichia coli, Salmonella typhi and Staphylococcus aureus). This research study has showcased that the production of inhibitory substances are common among some of the bacterial strains isolated from anthills.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 152 ◽  
Author(s):  
Ramona Iseppi ◽  
Alessandro Di Cerbo ◽  
Patrizia Messi ◽  
Carla Sabia

Background: We investigated the virulence factors, genes, antibiotic resistance patterns, and genotypes (VRE and ESBL/AmpC) production in Enterococci and Enterobacteriaceae strains isolated from fecal samples of humans, dogs, and cats. Methods: A total of 100 fecal samples from 50 humans, 25 dogs, and 25 cats were used in the study. MICs of nine antimicrobials were determined using the broth microdilution method. Polymerase chain reaction was used for the detection of genes responsible for antibiotic resistance (VRE and ESBL/AmpC) and virulence genes both in Enterococcus species, such as cytolysin (cylA, cylB, cylM), aggregation substance (agg), gelatinase (gelE), enterococcal surface protein (esp), cell wall adhesins (efaAfs and efaAfm), and in Enterobacteriaceae, such as cytolysin (hemolysin) and gelatinase production (afa, cdt, cnf1, hlyA, iutA, papC, sfa). Results: Enterococcus faecium was the most prevalent species in humans and cats, whereas Enterococcus faecalis was the species isolated in the remaining samples. A total of 200 Enterobacteriaceae strains were also detected, mainly from humans, and Escherichia coli was the most frequently isolated species in all types of samples. In the Enterococcus spp, the highest percentages of resistance for ampicillin, amoxicillin/clavulanate, erythromycin, tetracycline, ciprofloxacin, teicoplanin, and vancomycin were detected in cat isolates (41.6%, 52.8%, 38.9%, 23.6%, 62.5%, 20.8%, and 23.6% respectively), and in E. coli, a higher rate of resistance to cefotaxime and ceftazidime emerged in cat and dog samples, if compared with humans (75.4% and 66.0%, 80.0% and 71.4%, and 32.0% and 27.2%, respectively). Regarding the total number of enterococci, 5% and 3.4% of the strains were vancomycin and teicoplanin resistant, and the vancomycin resistance (van A) gene has been detected in all samples by PCR amplification. All the Enterobacteriaceae strains were confirmed as ESBL producers by PCR and sequencing, and the most frequent ESBL genes in E. coli strains from humans and pet samples were blaCTX-M-1 and blaCTX-M-15. Conclusions: Our results provide evidence that one or more virulence factors were present in both genera, underlining again the ability of pet strains to act as pathogens.


Sign in / Sign up

Export Citation Format

Share Document