scholarly journals USH2A is a skin end-organ protein necessary for vibration sensing in mice and humans

2020 ◽  
Author(s):  
Fred Schwaller ◽  
Valérie Bégay ◽  
Gema García-García ◽  
Francisco J. Taberner ◽  
Rabih Moshourab ◽  
...  

Fingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive vibration-sensing neurons are associated with Meissner’s corpuscles and Pacinian corpuscles1. Such end-organ structures have been recognized for more than 160 years, but their exact functions have remained a matter of speculation. Here we examined the role of USH2A in touch sensation in humans and mice. The USH2A gene encodes a transmembrane protein with a very large extracellular domain. Pathogenic USH2A mutations cause Usher syndrome associated with hearing loss and visual impairment2. We show that patients with biallelic pathogenic USH2A mutations also have profound impairments in vibrotactile touch perception. Similarly, mice lacking the USH2A protein showed severe deficits in a forepaw vibrotactile discrimination task. Forepaw rapidly-adapting mechanoreceptors (RAMs) recorded from Ush2a−/− mice innervating Meissner’s corpuscles showed profound reductions in their vibration sensitivity. However, the USH2A protein was not expressed in sensory neurons, but was found in specialized terminal Schwann cells in Meissner’s corpuscles. Loss of this large extracellular tether-like protein in corpuscular end-organs innervated by RAMs was sufficient to reduce the vibration sensitivity of mechanoreceptors. Thus, USH2A expressed in corpuscular end-organs associated with vibration sensing is required to properly perceive vibration. We propose that cells within the corpuscle present a tether-like protein that may link to mechanosensitive channels in sensory endings to facilitate small amplitude vibration detection essential for the perception of fine textured surfaces.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Schaefer ◽  
Anja Kühnel ◽  
Franziska Rumpel ◽  
Matti Gärtner

AbstractPrevious research revealed an active network of brain areas such as insula and anterior cingulate cortex when witnessing somebody else in pain and feeling empathy. But numerous studies also suggested a role of the somatosensory cortices for state and trait empathy. While recent studies highlight the role of the observer’s primary somatosensory cortex when seeing painful or nonpainful touch, the interaction of somatosensory cortex activity with empathy when receiving touch on the own body is unknown. The current study examines the relationship of touch related somatosensory cortex activity with dispositional empathy by employing an fMRI approach. Participants were touched on the palm of the hand either by the hand of an experimenter or by a rubber hand. We found that the BOLD responses in the primary somatosensory cortex were associated with empathy personality traits personal distress and perspective taking. This relationship was observed when participants were touched both with the experimenter’s real hand or a rubber hand. What is the reason for this link between touch perception and trait empathy? We argue that more empathic individuals may express stronger attention both to other’s human perceptions as well as to the own sensations. In this way, higher dispositional empathy levels might enhance tactile processing by top-down processes. We discuss possible implications of these findings.


2021 ◽  
Vol 22 (5) ◽  
pp. 2732
Author(s):  
Nadine Reichhart ◽  
Vladimir M. Milenkovic ◽  
Christian H. Wetzel ◽  
Olaf Strauß

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.


Author(s):  
Diana Hamdan ◽  
Lisa A. Robinson

Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines are key drivers of this process. CX3CL1 (fractalkine) is one of two unique chemokines synthesized as a transmembrane protein which undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, CX3CR1, CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form, and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.


Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5157-5165 ◽  
Author(s):  
T. Vernoux ◽  
J. Kronenberger ◽  
O. Grandjean ◽  
P. Laufs ◽  
J. Traas

The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.


2020 ◽  
Vol 134 (22) ◽  
pp. 3047-3062
Author(s):  
Koichi Yamamoto ◽  
Hikari Takeshita ◽  
Hiromi Rakugi

Abstract Angiotensin converting enzyme-2 (ACE2) is a multifunctional transmembrane protein recently recognised as the entry receptor of the virus causing COVID-19. In the renin–angiotensin system (RAS), ACE2 cleaves angiotensin II (Ang II) into angiotensin 1-7 (Ang 1-7), which is considered to exert cellular responses to counteract the activation of the RAS primarily through a receptor, Mas, in multiple organs including skeletal muscle. Previous studies have provided abundant evidence suggesting that Ang 1-7 modulates multiple signalling pathways leading to protection from pathological muscle remodelling and muscle insulin resistance. In contrast, there is relatively little evidence to support the protective role of ACE2 in skeletal muscle. The potential contribution of endogenous ACE2 to the regulation of Ang 1-7-mediated protection of these muscle pathologies is discussed in this review. Recent studies have suggested that ACE2 protects against ageing-associated muscle wasting (sarcopenia) through its function to modulate molecules outside of the RAS. Thus, the potential association of sarcopenia with ACE2 and the associated molecules outside of RAS is also presented herein. Further, we introduce the transcriptional regulation of muscle ACE2 by drugs or exercise, and briefly discuss the potential role of ACE2 in the development of COVID-19.


2021 ◽  
Vol 7 (1) ◽  
pp. e03-e03
Author(s):  
Neda Taghizabet ◽  
Fatemeh Rezaei-Tazangi ◽  
Hossein Roghani‐Shahraki

Previous studies have demonstrated a relationship between gender and COVID-19 outcomes. In addition, this is confirmed that men have more danger of progressing an acute type of the illness than women, specifies the significance of miscellaneous data related to male and female patients with COVID-19. In other words, some factors like hormonal levels and immune function may interact with each other. A perception of the fundamental reasons for gender diversities in COVID-19 patients can beget a chance for disease prevention and faster treatment. The present study evaluates the role of gender in the incidence and progression of the COVID-19 disease. It has been explained that how gender affects angiotensin-converting enzyme 2 (ACE2), which is a basic factor for the COVID-19 pathogenesis introducing the sex diversities in platelet function, immune reactions and how sex hormones affect immune functions, also the effect of androgens on transmembrane protein serine protease 2 (TMPRSS2) receptor in COVID-19 patients was investigated.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: –]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Sara McCurdy ◽  
William A Boisvert

Macrophage accumulation is a key process affecting all stages of atherosclerosis. Whether these cells accumulate in plaque solely by recruitment of monocytes from circulation or by proliferation within the plaque is an important question that has garnered much interest in recent years. Originally identified as a lymphocyte activation marker, CD98hc (SLC3A2) is a transmembrane protein involved in cell proliferation and survival via integrin signaling and MAP kinase activation. We hypothesized that CD98hc deficiency in myeloid cells would have a protective effect on atherosclerosis development and plaque composition by limiting macrophage proliferation. For the studies described, we utilized mice with myeloid-specific deletion of the CD98hc ( CD98hc fl/fl LysMCre + ) to determine the effects of CD98hc deficiency on macrophage function in the context of atherosclerosis . We performed in vitro assays to investigate the role of CD98hc in the proliferation and survival of primary mouse bone marrow derived macrophages. Although we found no differences in the number of bone marrow cells isolated from control or CD98hc -/- animals, after differentiation with MCS-F for 7 days, the number of macrophages obtained from CD98hc -/- mice was approximately 80% lower (7.2 ± 2.2 x 10 6 vs. 42.4 ± 4.6 x 10 6 per mouse) compared to control mice. Proliferation assays in vitro using EdU revealed approximately 50% (15.4 ± 2.5% vs. 7.5±1.8%) reduced cell proliferation in CD98hc -/- macrophages compared to control cells that could not be rescued with the addition M-CSF. In a 6-week atherosclerosis study using Ldlr -/- CD98hc fl/fl LysMCre + mice, Oil-Red O staining of whole aortae as well as aortic sinus sections showed that atherosclerotic plaque development was reduced compared to Ldlr -/- CD98hc fl/fl LysMCre - control mice. Additionally, immunohistochemical staining of atherosclerotic tissues revealed a reduction in macrophage abundance and proliferation within the plaque of Ldlr -/- CD98hc fl/fl LysMCre + mice compared to control mice. These findings support an important role of CD98hc in macrophage proliferation within the plaque environment, and provide a novel target for reducing atherosclerosis.


2020 ◽  
Vol 72 (6) ◽  
pp. 931-942 ◽  
Author(s):  
Mitsutoshi Ota ◽  
Yuki Tanaka ◽  
Ikuma Nakagawa ◽  
Jing‐Jing Jiang ◽  
Yasunobu Arima ◽  
...  

2007 ◽  
Vol 204 (9) ◽  
pp. 2047-2051 ◽  
Author(s):  
Simona Ferrari ◽  
Vassilios Lougaris ◽  
Stefano Caraffi ◽  
Roberta Zuntini ◽  
Jianying Yang ◽  
...  

Agammaglobulinemia is a rare primary immunodeficiency characterized by an early block of B cell development in the bone marrow, resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. So far, mutations in Btk, μ heavy chain, surrogate light chain, Igα, and B cell linker have been found in 85–90% of patients with agammaglobulinemia. We report on the first patient with agammaglobulinemia caused by a homozygous nonsense mutation in Igβ, which is a transmembrane protein that associates with Igα as part of the preBCR complex. Transfection experiments using Drosophila melanogaster S2 Schneider cells showed that the mutant Igβ is no longer able to associate with Igα, and that assembly of the BCR complex on the cell surface is abrogated. The essential role of Igβ for human B cell development was further demonstrated by immunofluorescence analysis of the patient's bone marrow, which showed a complete block of B cell development at the pro-B to preB transition. These results indicate that mutations in Igβ can cause agammaglobulinemia in man.


Sign in / Sign up

Export Citation Format

Share Document