scholarly journals Large-scale identification of ubiquitination sites on membrane-associated proteins in Arabidopsis thaliana seedlings

2020 ◽  
Author(s):  
Lauren E. Grubb ◽  
Paul Derbyshire ◽  
Katherine Dunning ◽  
Cyril Zipfel ◽  
Frank L.H. Menke ◽  
...  

AbstractProtein phosphorylation and ubiquitination are two of the most abundant forms of post-translational modifications in eukaryotes, regulated by thousands of protein kinases, phosphatases, E3 ubiquitin ligases, and ubiquitin proteases. Although previous studies have catalogued several ubiquitinated proteins in plants (Walton et al., 2016), few membrane-localized proteins have been identified. Receptor kinases (RKs) initiate phosphorylation signal relays that regulate plant growth, development, and stress responses. While the regulatory role of phosphorylation on protein kinase function is well-documented (Couto and Zipfel, 2016), considerably less is known about the role of ubiquitination on protein kinase function, even though protein turnover is critical to their signaling competence and cellular homeostasis. Here we describe the large-scale identification of ubiquitination sites on Arabidopsis proteins associated with or integral to the plasma membrane, including over 100 protein kinases.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Gerald Thiel ◽  
Tobias Schmidt ◽  
Oliver G. Rössler

Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.


2001 ◽  
Vol 69 (5) ◽  
pp. 3143-3149 ◽  
Author(s):  
S. Bonner ◽  
S. R. Yan ◽  
D. M. Byers ◽  
R. Bortolussi

ABSTRACT Neutrophils exposed to low concentrations of gram-negative lipopolysaccharide (LPS) become primed and have an increased oxidative response to a second stimulus (e.g., formyl-methionyl-leucyl-phenylalanine [fMLP]). In studies aimed at understanding newborn sepsis, we have shown that neutrophils of newborns are not primed in response to LPS. To further understand the processes involved in LPS-mediated priming of neutrophils, we explored the role of extracellular signal-related protein kinases (ERK 1 and 2) of the mitogen-activated protein kinase family. We found that LPS activated ERK 1 and 2 in cells of both adults and newborns and that activation was plasma dependent (maximal at ≥5%) through LPS-binding protein. Although fibronectin in plasma is required for LPS-mediated priming of neutrophils of adults assessed by fMLP-triggered oxidative burst, it was not required for LPS-mediated activation of ERK 1 and 2. LPS-mediated activation was dose and time dependent; maximal activation occurred with approximately 5 ng of LPS per ml and at 10 to 40 min. We used the inhibitor PD 98059 to study the role of ERK 1 and 2 in the LPS-primed fMLP-triggered oxidative burst. While Western blotting showed that 100 μM PD 98059 completely inhibited LPS-mediated ERK activation, oxidative response to fMLP by a chemiluminescence assay revealed that the same concentration inhibited the LPS-primed oxidative burst by only 40%. We conclude that in neutrophils, LPS-mediated activation of ERK 1 and 2 requires plasma and that this activation is not dependent on fibronectin. In addition, we found that the ERK pathway is not responsible for the lack of LPS priming in neutrophils of newborns but may be required for 40% of the LPS-primed fMLP-triggered oxidative burst in cells of adults.


2000 ◽  
Vol 83 (5) ◽  
pp. 2526-2532 ◽  
Author(s):  
Brian Varkevisser ◽  
Sue C. Kinnamon

Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4,5-tris-phosphate (IP3) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K+conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from ∼35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274–01 (NC-01, 200 μM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 μM). In all sweet-responsive taste buds tested ( n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 μM) resulted in inhibition of the NC-01 response by ∼75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 μM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca2+-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 μM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca2+ that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.


2003 ◽  
Vol 31 (1) ◽  
pp. 87-89 ◽  
Author(s):  
J.D. Scott

Targeting of protein kinases and phosphatases to the cytoskeleton enhances the regulation of many signalling events. Cytoskeletal signalling complexes facilitate this process by optimizing the relay of messages from membrane receptors to specific sites on the actin cytoskeleton. These signals influence fundamental cell properties such as shape, movement and division. Targeting of the cAMP-dependent kinase (protein kinase A) and other enzymes to this compartment is achieved through interaction with A-kinase-anchoring proteins (AKAPs). The present paper discusses recent progress on dissecting the biological role of WAVE1 (Wiskott–Alrich syndrome protein family verprolin homology protein 1), an AKAP that assembles a cytoskeletal transduction complex in response to signals that emanate from the low-molecular-mass GTPase, Rac.


2017 ◽  
Vol 114 (6) ◽  
pp. E931-E940 ◽  
Author(s):  
Lalima G. Ahuja ◽  
Alexandr P. Kornev ◽  
Christopher L. McClendon ◽  
Gianluigi Veglia ◽  
Susan S. Taylor

The expertise of protein kinases lies in their dynamic structure, wherein they are able to modulate cellular signaling by their phosphotransferase activity. Only a few hundreds of protein kinases regulate key processes in human cells, and protein kinases play a pivotal role in health and disease. The present study dwells on understanding the working of the protein kinase-molecular switch as an allosteric network of “communities” composed of congruently dynamic residues that make up the protein kinase core. Girvan–Newman algorithm-based community maps of the kinase domain of cAMP-dependent protein kinase A allow for a molecular explanation for the role of protein conformational entropy in its catalytic cycle. The community map of a mutant, Y204A, is analyzed vis-à-vis the wild-type protein to study the perturbations in its dynamic profile such that it interferes with transfer of the γ-phosphate to a protein substrate. Conventional biochemical measurements are used to ascertain the effect of these dynamic perturbations on the kinetic profiles of both proteins. These studies pave the way for understanding how mutations far from the kinase active site can alter its dynamic properties and catalytic function even when major structural perturbations are not obvious from static crystal structures.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Juliana Rombaldi Bernardi ◽  
Renata de Souza Escobar ◽  
Charles Francisco Ferreira ◽  
Patrícia Pelufo Silveira

Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children’s neurodevelopment, nutrition, and growth.


1993 ◽  
Vol 295 (1) ◽  
pp. 255-261 ◽  
Author(s):  
L Tenneti ◽  
B R Talamo

Evidence for the modulation of the P2z-purinoceptor for extracellular ATP in dissociated rat parotid cells is presented in studies using compounds that inhibit protein kinases. Preincubation of acinar cells with the protein kinase catalytic-site inhibitors K-252a and staurosporine, as well as with the regulatory-domain inhibitor sphingosine, specifically potentiates the elevation in cytosolic Ca2+ concentration ([Ca2+]i) mediated by extracellular ATP, but has no effect on the [Ca2+]i elevation mediated by muscarinic receptors through phospholipase C activation. Phorbol dibutyrate (PDBu), which activates protein kinase C (PKC), has no modulatory effect on ATP-mediated [Ca2+]i elevation. Further, pretreatment with PDBu does not reverse or block the effects of K-252a or sphinogosine, arguing against the involvement of PKC. Other pharmacological manipulations indicate that neither calmodulin-dependent nor cyclic-AMP-dependent kinases are involved. Neither the peak intracellular Ca2+ mobilization nor the sustained Ca2+ entry in response to carbachol or to a Ca2+ ionophore (4-bromo-A23187) is altered by the kinase inhibitors that potentiate the [Ca2+]i response to ATP, indicating that effects on the ATP response are not due to non-specific permeability changes, nor to decreased Ca2+ removal from the cytosol. ATP-mediated influx of Mn2+ as well as ATP-induced membrane depolarization are potentiated in cells preincubated with K-252a, directly demonstrating that cation influx is enhanced through a P2z-specific route. These results show that P2z responses (or purinoceptors) can be modulated and suggest that phosphorylation events are involved.


1998 ◽  
Vol 8 (2) ◽  
pp. 193-200 ◽  
Author(s):  
M. K. Walker-Simmons

AbstractReversible phosphorylation is catalysed by protein kinases that transfer the γ-phosphate from ATP to amino acid residues of proteins. The process can be reversed by protein phosphatases. Phosphorylation can dramatically activate or inhibit enzymes and affect protein-protein interaction. Through phosphorylation protein kinases can amplify and propagate cellular signals. In plants and now seeds, protein kinases involved in hormone, defence and environmental stress responses are being identified. Increasingly, these protein kinases are being cloned and characterized, demonstrating the major role of reversible protein phosphorylation in seeds.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wasifa Hafiz Shah ◽  
Aadil Rasool ◽  
Seerat Saleem ◽  
Naveed Ul Mushtaq ◽  
Inayatullah Tahir ◽  
...  

Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.


2019 ◽  
Vol 10 ◽  
Author(s):  
Xiang-Zhan Zhang ◽  
Wei-Jun Zheng ◽  
Xin-You Cao ◽  
Xi-Yan Cui ◽  
Shu-Ping Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document