scholarly journals Applications of machine learning to solve genetics problems

2020 ◽  
Author(s):  
Kehinde Sowunmi ◽  
Victor Nnanna Nweze ◽  
Soyebo Titilayo Abiola ◽  
Okosesi Ebunoluwa Ajibike ◽  
Adesiyan Ayobami Lawal ◽  
...  

AbstractThe development of precise DNA editing nucleases that induce double-strand breaks (DSBs) - including zinc finger nucleases, TALENs, and CRISPR/Cas systems - has revolutionized gene editing and genome engineering. Endogenous DNA DSB repair mechanisms are often leveraged to enhance editing efficiency and precision. While the non-homologous end joining (NHEJ) and homologous recombination (HR) DNA DSB repair pathways have already been the topic of an excellent deal of investigation, an alternate pathway, microhomology-mediated end joining (MMEJ), remains relatively unexplored. However, the MMEJ pathway’s ability to supply reproducible and efficient deletions within the course of repair makes it a perfect pathway to be used in gene knockouts. (Microhomology Evoked Deletion Judication EluciDation) may be a random forest machine learning-based method for predicting the extent to which the location of a targeted DNA DSB are going to be repaired using the MMEJ repair pathway. On an independent test set of 24 HeLa cell DSB sites, MEDJED achieved a Pearson coefficient of correlation (PCC) of 81.36%, Mean Absolute Error (MAE) of 10.96%, and Root Mean Square Error (RMSE) of13.09%. This performance demonstrates MEDJED’s value as a tool for researchers who wish to leverage MMEJ to supply efficient and precise gene knock outs.

Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


2016 ◽  
Author(s):  
Marella D. Canny ◽  
Leo C.K. Wan ◽  
Amélie Fradet-Turcotte ◽  
Alexandre Orthwein ◽  
Nathalie Moatti ◽  
...  

AbstractThe expanding repertoire of programmable nucleases such as Cas9 brings new opportunities in genetic medicine1–3. In many cases, these nucleases are engineered to induce a DNA double-strand break (DSB) to stimulate precise genome editing by homologous recombination (HR). However, HR efficiency is nearly always hindered by competing DSB repair pathways such as non-homologous end-joining (NHEJ). HR is also profoundly suppressed in non-replicating cells, thus precluding the use of homology-based genome engineering in a wide variety4 of cell types. Here, we report the development of a genetically encoded inhibitor of 53BP1 (known as TP53BP1), a regulator of DSB repair pathway choice5. 53BP1 promotes NHEJ over HR by suppressing end resection, the formation of 3-prime single-stranded DNA tails, which is the rate-limiting step in HR initiation. 53BP1 also blocks the recruitment of the HR factor BRCA1 to DSB sites in G1 cells4,6. The inhibitor of 53BP1 (or i53) was identified through the screening of a massive combinatorial library of engineered ubiquitin variants by phage display7. i53 binds and occludes the ligand binding site of the 53BP1 Tudor domain with high affinity and selectivity, blocking its ability to accumulate at sites of DNA damage. i53 is a potent selective inhibitor of 53BP1 and enhances gene targeting and chromosomal gene conversion, two HR-dependent reactions. Finally, i53 can also activate HR in G1 cells when combined with the activation of end-resection and KEAP1 inhibition. We conclude that 53BP1 inhibition is a robust tool to enhance precise genome editing by canonical HR pathways.


2021 ◽  
Author(s):  
Martin Peterka ◽  
Nina Akrap ◽  
Songyuan Li ◽  
Sandra Wimberger ◽  
Pei-Pei Hsieh ◽  
...  

Prime editing recently emerged as a next-generation approach for precise genome editing. Here we exploit DNA double-strand break (DSB) repair to develop two novel strategies that install precise genomic insertions using an SpCas9 nuclease-based prime editor (PEn). We first demonstrate that PEn coupled to a regular prime editing guide RNA (pegRNA) efficiently promotes short genomic insertions through a homology-dependent DSB repair mechanism. While PEn editing lead to increased levels of by-products, it rescued pegRNAs that performed poorly with a nickase-based prime editor. We also present a small molecule approach that yielded increased product purity of PEn editing. Next, we developed a homology-independent PEn editing strategy by engineering a single primed insertion gRNA (springRNA) which installs genomic insertions at DSBs through the non-homologous end joining pathway (NHEJ). Lastly, we show that PEn-mediated insertions at DSBs prevent Cas9-induced large chromosomal deletions and provide evidence that continuous Cas9-mediated cutting is one of the mechanisms by which Cas9-induced large deletions arise. Altogether, this work expands the current prime editing toolbox by leveraging distinct DNA repair mechanisms including NHEJ, which represents the primary pathway of DSB repair in mammalian cells.


2021 ◽  
pp. jmedgenet-2020-107398
Author(s):  
Guoqing Li ◽  
Xi Yang ◽  
Lingbo Wang ◽  
Yuncheng Pan ◽  
Siyuan Chen ◽  
...  

BackgroundPremature ovarian insufficiency (POI) is a common disease in women that leads to a reduced reproductive lifespan. The aetiology of POI is genetically heterogeneous, with certain double-strand break (DSB) repair genes being implicated in POI. Although non-homologous end joining (NHEJ) is an efficient DSB repair pathway, the functional relationship between this pathway and POI remains unknown.Methods and resultsWe conducted whole-exome sequencing in a Chinese family and identified a rare heterozygous loss-of-function variant in non-homologous end joining factor 1 (NHEJ1): c.532C>T (p.R178*), which co-segregated with POI and irregular menstruation. The amount of NHEJ1 protein in the proband was half of the normal level, indicating a link between NHEJ1 haploinsufficiency and POI. Furthermore, another rare heterozygous NHEJ1 variant c.500A>G (p.Y167C) was identified in one of 100 sporadic POI cases. Both variants were predicted to be deleterious by multiple in silico tools. In vitro assays showed that knock-down of NHEJ1 in human KGN ovarian cells impaired DNA repair capacity. We also generated a knock-in mouse model with a heterozygous Nhej1 variant equivalent to NHEJ1 p.R178* in familial patients. Compared with wild-type mice, heterozygous Nhej1-mutated female mice required a longer time to first birth, and displayed reduced numbers of primordial and growing follicles. Moreover, these mice exhibited higher sensitivity to DSB-inducing drugs. All these phenotypes are analogous to the progressive loss of ovarian function observed in POI.ConclusionsOur observations in both humans and mice suggest that NHEJ1 haploinsufficiency is associated with non-syndromic POI, providing novel insights into genetic counselling and clinical prevention of POI.


2021 ◽  
Author(s):  
Xiaocui Li ◽  
Xiaojuan Li ◽  
Chen Xie ◽  
Sihui Cai ◽  
Mengqiu Li ◽  
...  

AbstractAs a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


Open Biology ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 160225 ◽  
Author(s):  
Sylvie Moureau ◽  
Janna Luessing ◽  
Emma Christina Harte ◽  
Muriel Voisin ◽  
Noel Francis Lowndes

Loss of p53, a transcription factor activated by cellular stress, is a frequent event in cancer. The role of p53 in tumour suppression is largely attributed to cell fate decisions. Here, we provide evidence supporting a novel role for p53 in the regulation of DNA double-strand break (DSB) repair pathway choice. 53BP1, another tumour suppressor, was initially identified as p53 Binding Protein 1, and has been shown to inhibit DNA end resection, thereby stimulating non-homologous end joining (NHEJ). Yet another tumour suppressor, BRCA1, reciprocally promotes end resection and homologous recombination (HR). Here, we show that in both human and mouse cells, the absence of p53 results in impaired 53BP1 focal recruitment to sites of DNA damage induced by ionizing radiation. This effect is largely independent of cell cycle phase and the extent of DNA damage. In p53-deficient cells, diminished localization of 53BP1 is accompanied by a reciprocal increase in BRCA1 recruitment to DSBs. Consistent with these findings, we demonstrate that DSB repair via NHEJ is abrogated, while repair via homology-directed repair (HDR) is stimulated. Overall, we propose that in addition to its role as an ‘effector’ protein in the DNA damage response, p53 plays a role in the regulation of DSB repair pathway choice.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 467 ◽  
Author(s):  
Ulrike Schötz ◽  
Viola Balzer ◽  
Friedrich-Wilhelm Brandt ◽  
Frank Ziemann ◽  
Florentine S.B. Subtil ◽  
...  

The PI3K/Akt/mTOR pathway is frequently altered in human papillomavirus (HPV)-positive and negative squamous cell carcinoma of the head and neck (HNSCC) and overstimulation is associated with poor prognosis. PI3K drives Akt activation and constitutive signaling acts pro-proliferative, supports cell survival, DNA repair, and contributes to radioresistance. Since the small molecule NVP-BEZ235 (BEZ235) is a potent dual inhibitor of this pathway, we were interested whether BEZ235 could be an efficient radiosensitizer. The 50 nM BEZ235 was found to abrogate endogenous and irradiation-induced phosphorylation of Akt (Ser473). The anti-proliferative capacity of the drug resulted in an increase in G1-phase cells. Repair of radiation-induced DNA double-strand breaks (DSBs) was strongly suppressed. Reduction in DSB repair was only apparent in G1- but not in G2-phase cells, suggesting that BEZ235 primarily affects non-homologous end joining. This finding was confirmed using a DSB repair reporter gene assay and could be attributed to an impaired phosphorylation of DNA-PKcs (S2056). Cellular radiosensitivity increased strongly after BEZ235 addition in all HNSCC cell lines used, especially when irradiated in the G0 or G1 phase. Our data indicate that targeting the PI3K/Akt/mTOR pathway by BEZ235 with concurrent radiotherapy may be considered an effective strategy for the treatment of HNSCC, regardless of the HPV and Akt status.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena B. Rother ◽  
Stefania Pellegrino ◽  
Rebecca Smith ◽  
Marco Gatti ◽  
Cornelia Meisenberg ◽  
...  

AbstractChromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled ‘chromatin breathing’ upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xuan Li ◽  
Jessica K Tyler

The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways.


Sign in / Sign up

Export Citation Format

Share Document