scholarly journals Signal and noise in circRNA translation

2020 ◽  
Author(s):  
TB Hansen

AbstractWithin recent years, circular RNAs (circRNAs) have been an attractive new field of research in RNA biology and disease. Consequently, numerous studies have been published towards the disclosure of circRNA biogenesis and function. Initially, circRNAs were described as a subclass of cytoplasmic non-coding RNA, however, a few recent observations have proposed that circRNAs may instead be templates for protein production. The extent to which this is the case is currently debated, and therefore using rigorous data analysis and proper experimental setups is instrumental to settle the current controversies. Here, the conventional experiments used for detecting circRNA translation are outlined, and guidelines to distinguish signal from the inherent noise are discussed. While these guidelines are specific for circRNA translation, most also apply to all other aspects of non-canonical translation.

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1742
Author(s):  
Stefania Mantziou ◽  
Georgios S. Markopoulos

Long non-coding RNAs (lncRNAs) have emerged during the post-genomic era as significant epigenetic regulators. Viral-like 30 elements (VL30s) are a family of mouse retrotransposons that are transcribed into functional lncRNAs. Recent data suggest that VL30 RNAs are efficiently packaged in small extracellular vesicles (SEVs) through an SEV enrichment sequence. We analysed VL30 elements for the presence of the distinct 26 nt SEV enrichment motif and found that SEV enrichment is an inherent hallmark of the VL30 family, contained in 36 full-length elements, with a widespread chromosomal distribution. Among them, 25 elements represent active, present-day integrations and contain an abundance of regulatory sequences. Phylogenetic analysis revealed a recent spread of SEV-VL30s from 4.4 million years ago till today. Importantly, 39 elements contain an SFPQ-binding motif, associated with the transcriptional induction of oncogenes. Most SEV-VL30s reside in transcriptionally active regions, as characterised by their distribution adjacent to candidate cis-regulatory elements (cCREs). Network analysis of SEV-VL30-associated genes suggests a distinct transcriptional footprint associated with embryonal abnormalities and neoplasia. Given the established role of VL30s in oncogenesis, we conclude that their potential to spread through SEVs represents a novel mechanism for non-coding RNA biology with numerous implications for cellular homeostasis and disease.


2017 ◽  
Author(s):  
Steven P. Barrett ◽  
Kevin R. Parker ◽  
Caroline Horn ◽  
Miguel Mata ◽  
Julia Salzman

AbstractciRS-7 is an intensely studied, highly expressed and conserved circRNA. Essentially nothing is known about its biogenesis, including the location of its promoter. A prevailing assumption has been that ciRS-7 is an exceptional circRNA because it is transcribed from a locus lacking any mature linear RNA transcripts of the same sense. Our interest in the biogenesis of ciRS-7 led us to develop an algorithm to define its promoter. This approach predicted that the human ciRS-7 promoter coincides with that of the long non-coding RNA, LINC00632. We validated this prediction using multiple orthogonal experimental assays. We also used computational approaches and experimental validation to establish that ciRS-7 exonic sequence is embedded in linear transcripts that are flanked by cryptic exons in both human and mouse. Together, this experimental and computational evidence generate a new view of regulation in this locus: (a) ciRS-7 is like other circRNAs, as it is spliced into linear transcripts; (b) expression of ciRS-7 is primarily determined by the chromatin state of LINC00632 promoters; (c) transcription and splicing factors sufficient for ciRS-7 biogenesis are expressed in cells that lack detectable ciRS-7 expression. These findings have significant implications for the study of the regulation and function of ciRS-7, and the analytic framework we developed to jointly analyze RNA-seq and ChlP-seq data reveal the potential for genome-wide discovery of important biological regulation missed in current reference annotations.Author SummarycircRNAs were recently discovered to be a significant product of ‘host’ gene expression programs but little is known about their transcriptional regulation. Here, we have studied the expression of a well-known circRNA named ciRS-7. ciRS-7 has an unusual function for a circRNA; it is believed to be a miRNA sponge. Previously, ciRS-7 was thought to be transcribed from a locus lacking any mature linear isoforms, unlike all other circular RNAs known to be expressed in human cells. However, we have found this to be false; using a combination of bioinformatic and experimental genetic approaches, in both human and mouse, we discovered that linear transcripts containing the ciRS-7 exonic sequence, linking it to upstream genes. This suggests the potential for additional functional roles of this important locus and provides critical information to begin study on the biogenesis of ciRS-7.


2016 ◽  
Vol 96 (4) ◽  
pp. 1297-1325 ◽  
Author(s):  
Julia Beermann ◽  
Maria-Teresa Piccoli ◽  
Janika Viereck ◽  
Thomas Thum

Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.


2012 ◽  
Vol 40 (4) ◽  
pp. 836-841 ◽  
Author(s):  
Jonathan Houseley

Unstable non-coding RNAs are produced from thousands of loci in all studied eukaryotes (and also prokaryotes), but remain of largely unknown function. The present review summarizes the mechanisms of eukaryotic non-coding RNA degradation and highlights recent findings regarding function. The focus is primarily on budding yeast where the bulk of this research has been performed, but includes results from higher eukaryotes where available.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


2021 ◽  
Vol 22 (13) ◽  
pp. 7119
Author(s):  
Golam Rbbani ◽  
Artem Nedoluzhko ◽  
Jorge Galindo-Villegas ◽  
Jorge M. O. Fernandes

Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiangchun Pan ◽  
Wentao Gong ◽  
Yingting He ◽  
Nian Li ◽  
Hao Zhang ◽  
...  

Abstract Background In mammals, the ovary is the essential system of female reproduction for the onset of puberty, and the abnormal puberty has negative outcomes on health. CircRNA is a non-coding RNA produced by non-canonical alternative splicing (AS). Several studies have reported that circRNA is involved in the gene regulation and plays an important role in some human diseases. However, the contribution of circRNA has received little known within the onset of puberty in ovary. Results Here, the profiles of ovarian circRNAs across pre-, in- and post-pubertal stages were established by RNA-sEq. In total, 972 circRNAs were identified, including 631 stage-specific circRNAs and 8 tissue-specific circRNAs. The biological functions of parental genes of circRNAs were enriched in steroid biosynthesis, autophagy-animal, MAPK signaling pathway, progesterone-mediated oocyte maturation and ras signaling pathway. Moreover, 5 circRNAs derived from 4 puberty-related genes (ESR1, JAK2, NF1 and ARNT) were found in this study. The A3SS events were the most alternative splicing, but IR events were likely to be arose in post-pubertal ovaries. Besides, the circRNA-miRNA-gene networks were explored for 10 differentially expressed circRNAs. Furthermore, the head-to-tail exon as well as the expressions of 10 circRNAs were validated by the divergent RT-qPCR and sanger sequencing. Conclusions In summary, the profiles of ovarian circRNAs were provided during pubertal transition in gilts, and these results provided useful information for the investigation on the onset of puberty at the ovarian-circRNAs-level in mammals.


2018 ◽  
Vol 27 (12) ◽  
pp. 1763-1777 ◽  
Author(s):  
Sheng-Wen Wang ◽  
Zhong Liu ◽  
Zhong-Song Shi

Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.


2018 ◽  
Author(s):  
Karol Czubak ◽  
Katarzyna Taylor ◽  
Agnieszka Piasecka ◽  
Krzysztof Sobczak ◽  
Katarzyna Kozlowska ◽  
...  

AbstractSplicing aberrations induced as a consequence of the sequestration of MBNL splicing factors on the DMPK transcript, which contains expanded CUG repeats, present a major pathomechanism of myotonic dystrophy type 1 (DM1). As MBNLs may also be important factors involved in the biogenesis of circular RNAs (circRNAs), we hypothesized that the level of circRNAs would be decreased in DM1. To test this hypothesis, we selected twenty well-validated circRNAs and analyzed their levels in several experimental systems (e.g., cell lines, DM muscle tissues, and a mouse model of DM1) using droplet digital PCR assays. We also explored the global level of circRNAs using two RNA-Seq datasets of DM1 muscle samples. Contrary to our original hypothesis, our results consistently showed a global increase in circRNA levels in DM1 and we identified numerous circRNAs that were increased in DM1. We also identified many genes (including muscle-specific genes) giving rise to numerous (>10) circRNAs. Thus, this study is the first to show an increase in global circRNA levels in DM1. We also provided preliminary results showing the association of circRNA level with muscle weakness and alternative splicing changes that are biomarkers of DM1 severity.Author SummaryRecently, a great deal of interest has been focused on a new class of RNA molecules called circular RNAs (circRNAs). To date, thousands of circRNAs have been found in different human cells/tissues. Although the function of circRNAs remains mostly unknown, circRNAs have emerged as an important component of the RNA-RNA and RNA-protein interactome. Thus, intensive efforts are being made to fully understand the biology and function of circRNAs, especially their role in human diseases. As an important role in the biogenesis of circRNA may be played by MBNL splicing factors, in this study we used DM1 (to a lesser extent, DM2) as a natural model in which the level of MBNLs is decreased. In contrast to the expected effect, our results consistently showed a global increase in circRNA levels in DM1. As a consequence, whole genome transcriptome analysis revealed dozens of circRNAs with significantly altered (mostly increased) levels in DM1. Furthermore, we observed that the circRNA levels were in many cases strongly associated with DM1 severity.


2020 ◽  
Author(s):  
Sebastien Riquier ◽  
Marc Mathieu ◽  
Anthony Boureux ◽  
Florence Ruffle ◽  
Jean-Marc Lemaitre ◽  
...  

AbstractThe development of RNA sequencing (RNAseq) and corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Using a dedicated bioinformatics pipeline, we propose to construct a cell-specific catalogue of unannotated lncRNAs and to identify the strongest cell markers. This pipeline uses ab initio transcript identification, pseudoalignment and new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data.For an application model, we focused on Mesenchymal Stem Cells (MSCs), a type of adult multipotent stem-cells of diverse tissue origins. Frequently used in clinics, these cells lack extensive characterisation. Our pipeline was able to highlight different lncRNAs with high specificity for MSCs. In silico methodologies for functional prediction demonstrated that each candidate represents one specific state of MSCs biology. Together, these results suggest an approach that can be employed to harness lncRNA as cell marker, showing different candidates as potential actors in MSCs biology, while suggesting promising directions for future experimental investigations.


Sign in / Sign up

Export Citation Format

Share Document