scholarly journals Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches

2016 ◽  
Vol 96 (4) ◽  
pp. 1297-1325 ◽  
Author(s):  
Julia Beermann ◽  
Maria-Teresa Piccoli ◽  
Janika Viereck ◽  
Thomas Thum

Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.

Author(s):  
Tingsen Benson Lim ◽  
Annadoray Lavenniah ◽  
Roger Sik-Yin Foo

Abstract The combination of next-generation sequencing, advanced bioinformatics analysis, and molecular research has now established circular RNAs (circRNAs) as a heterogeneous group of non-coding RNA that is widely and abundantly expressed. CircRNAs are single-stranded RNA, covalently backspliced to form closed circular loops. Different models of back-splicing have been proposed, and mechanisms for circRNA function include sequestering microRNAs, direct interaction with proteins, regulation of transcription, and translation. Exploring the role of circRNAs in different disease settings, and understanding how they contribute to disease progression promises to provide valuable insight into potential novel therapeutic approaches. Here, we review the growing number of published research on circRNAs in the heart and cardiovascular system and summarize the circRNAs that have been implicated in disease.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Debina Sarkar ◽  
Sarah D. Diermeier

Circular RNAs (circRNAs) are a class of non-coding RNAs that form a covalently closed loop. A number of functions and mechanisms of action for circRNAs have been reported, including as miRNA sponge, exerting transcriptional and translational regulation, interacting with proteins, and coding for peptides. CircRNA dysregulation has also been implicated in many cancers, such as breast cancer. Their relatively high stability and presence in bodily fluids makes cancer-associated circRNAs promising candidates as a new biomarker. In this review, we summarize the research undertaken on circRNAs associated with breast cancer, discuss circRNAs as biomarkers, and present circRNA-based therapeutic approaches.


2012 ◽  
Vol 40 (4) ◽  
pp. 836-841 ◽  
Author(s):  
Jonathan Houseley

Unstable non-coding RNAs are produced from thousands of loci in all studied eukaryotes (and also prokaryotes), but remain of largely unknown function. The present review summarizes the mechanisms of eukaryotic non-coding RNA degradation and highlights recent findings regarding function. The focus is primarily on budding yeast where the bulk of this research has been performed, but includes results from higher eukaryotes where available.


2018 ◽  
Vol 27 (12) ◽  
pp. 1763-1777 ◽  
Author(s):  
Sheng-Wen Wang ◽  
Zhong Liu ◽  
Zhong-Song Shi

Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.


Immunotherapy ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 513-529
Author(s):  
Dmitrii Shek ◽  
Scott A Read ◽  
Liia Akhuba ◽  
Liang Qiao ◽  
Bo Gao ◽  
...  

Non-coding RNAs (ncRNAs) are an abundant component of the human transcriptome. Their biological role, however, remains incompletely understood. Nevertheless, ncRNAs are highly associated with cancer development and progression due to their ability to modulate gene expression, protein translation and growth pathways. Immune-checkpoint inhibitors (ICIs) are considered one of the most promising and highly effective therapeutic approaches for cancer treatment. ICIs are monoclonal antibodies targeting immune checkpoints such as CTLA-4, PD-1 and PD-L1 signalling pathways that stimulate T cell cytotoxicity and can result in tumor growth suppression. This Review will summarize existing knowledge regarding ncRNAs and their role in cancer and ICI therapy. In addition, we will discuss potential mechanisms by which ncRNAs may influence ICI treatment outcomes.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2019 ◽  
Vol 21 (1) ◽  
pp. 28 ◽  
Author(s):  
Silvia Ferrari ◽  
Maurizio Pesce

The heart is par excellence the ‘in-motion’ organ in the human body. Compelling evidence shows that, besides generating forces to ensure continuous blood supply (e.g., myocardial contractility) or withstanding passive forces generated by flow (e.g., shear stress on endocardium, myocardial wall strain, and compression strain at the level of cardiac valves), cells resident in the heart respond to mechanical cues with the activation of mechanically dependent molecular pathways. Cardiac stromal cells, most commonly named cardiac fibroblasts, are central in the pathologic evolution of the cardiovascular system. In their normal function, these cells translate mechanical cues into signals that are necessary to renew the tissues, e.g., by continuously rebuilding the extracellular matrix being subjected to mechanical stress. In the presence of tissue insults (e.g., ischemia), inflammatory cues, or modifiable/unmodifiable risk conditions, these mechanical signals may be ‘misinterpreted’ by cardiac fibroblasts, giving rise to pathology programming. In fact, these cells are subject to changing their phenotype from that of matrix renewing to that of matrix scarring cells—the so-called myo-fibroblasts—involved in cardiac fibrosis. The links between alterations in the abilities of cardiac fibroblasts to ‘sense’ mechanical cues and molecular pathology programming are still under investigation. On the other hand, various evidence suggests that cell mechanics may control stromal cells phenotype by modifying the epigenetic landscape, and this involves specific non-coding RNAs. In the present contribution, we will provide examples in support of this more integrated vision of cardiac fibrotic progression based on the decryption of mechanical cues in the context of epigenetic and non-coding RNA biology.


2020 ◽  
Author(s):  
TB Hansen

AbstractWithin recent years, circular RNAs (circRNAs) have been an attractive new field of research in RNA biology and disease. Consequently, numerous studies have been published towards the disclosure of circRNA biogenesis and function. Initially, circRNAs were described as a subclass of cytoplasmic non-coding RNA, however, a few recent observations have proposed that circRNAs may instead be templates for protein production. The extent to which this is the case is currently debated, and therefore using rigorous data analysis and proper experimental setups is instrumental to settle the current controversies. Here, the conventional experiments used for detecting circRNA translation are outlined, and guidelines to distinguish signal from the inherent noise are discussed. While these guidelines are specific for circRNA translation, most also apply to all other aspects of non-canonical translation.


2020 ◽  
Author(s):  
xuanjun liu ◽  
Lan Yan ◽  
Chun Lin ◽  
Yiliang Zhang ◽  
Haofei Miao ◽  
...  

Abstract BackgroundDepression is one of the most common psychiatric disease worldwide. Although the research about the pathogenesis of depression have achieved progress, the detailed effect of non-coding RNAs (ncRNAs) in depression are still not clearly elucidated. This study was aimed to identify non-coding RNA biomarkers in stress-induced depression via comprehensive analysis of competing endogenous RNA networkMethodsIn this present study, we acquired RNA expression from RNA seq expression profile in three mice with depressive-like behaviors using chronic restraint stress paradigm and three C57BL/6J wild-type mice as control mice. ResultsA total of 41 differentially expressed circular RNAs (circRNAs) and 181 differentially expressed messenger RNAs (mRNAs) were up-regulated, and 65 differentially expressed circRNAs and 289 differentially expressed mRNAs were down-regulated, which were selected by a threshold of fold change ≥2 and a p-value < 0.05. Gene Ontology was performed to analyze the biological functions, and we predicted potential signaling pathways based on Kyoto Encyclopedia of Genes and Genomes pathway database. In addition, we constructed a circRNA-microRNA (miRNA)-mRNA regulatory network to further identify non-coding RNAs biomarkers. ConclusionsOur findings provide a promising perspective for further research into molecular mechanisms of depression, and targeting circRNA -mediated competing endogenous RNA (ceRNA) network is a useful strategy to early recognize the depression.


Author(s):  
Da-Hong Chen ◽  
Ji-Gang Zhang ◽  
Chuan-Xing Wu ◽  
Qin Li

Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.


Sign in / Sign up

Export Citation Format

Share Document