scholarly journals Furin cleaves SARS-CoV-2 spike-glycoprotein at S1/S2 and S2’ for viral fusion/entry: indirect role of TMPRSS2

2020 ◽  
Author(s):  
Rachid Essalmani ◽  
Jaspreet Jain ◽  
Delia Susan-Resiga ◽  
Ursula Andréo ◽  
Alexandra Evagelidis ◽  
...  

AbstractThe Spike (S)-protein of SARS-CoV-2 binds host-cell receptor ACE2 and requires proteolytic “priming” (S1/S2) and “fusion-activation” (S2’) for viral entry. The S-protein furin-like motifs PRRAR685↓ and KPSKR815↓ indicated that proprotein convertases promote virus entry. We demonstrate that furin and PC5A induce cleavage at both sites, ACE2 enhances S2’ processing, and their pharmacological inhibition (BOS-inhibitors) block endogenous cleavages. S1/S2-mutations (μS1/S2) limit S-protein-mediated cell-to-cell fusion, similarly to BOS-inhibitors. Unexpectedly, TMPRSS2 does not cleave at S1/S2 or S2’, but it can: (i) cleave/inactivate S-protein into S2a/S2b; (ii) shed ACE2; (iii) cleave S1-subunit into secreted S1’, activities inhibited by Camostat. In lung-derived Calu-3 cells, BOS-inhibitors and µS1/S2 severely curtail “pH-independent” viral entry, and BOS-inhibitors alone/with Camostat potently reduce infectious viral titer and cytopathic effects. Overall, our results show that: furin plays a critical role in generating fusion-competent S-protein, and indirectly, TMPRSS2 promotes viral entry, supporting furin and TMPRSS2 inhibitors as potential antivirals against SARS-CoV-2.

2020 ◽  
Vol 20 (26) ◽  
pp. 2362-2378
Author(s):  
Satya P. Gupta

The article highlights an up-to-date progress in studies on structural and the remedial aspects of novel coronavirus 2019-nCoV, renamed as SARS-CoV-2, leading to the disease COVID-19, a pandemic. In general, all CoVs including SARS-CoV-2 are spherical positive single-stranded RNA viruses containing spike (S) protein, envelope (E) protein, nucleocapsid (N) protein, and membrane (M) protein, where S protein has a Receptor-binding Domain (RBD) that mediates the binding to host cell receptor, Angiotensin Converting Enzyme 2 (ACE2). The article details the repurposing of some drugs to be tried for COVID-19 and presents the status of vaccine development so far. Besides drugs and vaccines, the role of Convalescent Plasma (CP) therapy to treat COVID-19 is also discussed.


2020 ◽  
Author(s):  
Yang Yang ◽  
Yi Du ◽  
Igor A. Kaltashov

ABSTRACTThe emergence and rapid proliferation of the novel coronavirus (SARS-CoV-2) resulted in a global pandemic, with over six million cases and nearly four hundred thousand deaths reported world-wide by the end of May 2020. A rush to find the cures prompted re-evaluation of a range of existing therapeutics vis-à-vis their potential role in treating COVID-19, placing a premium on analytical tools capable of supporting such efforts. Native mass spectrometry (MS) has long been a tool of choice in supporting the mechanistic studies of drug/therapeutic target interactions, but its applications remain limited in the cases that involve systems with a high level of structural heterogeneity. Both SARS-CoV-2 spike protein (S-protein), a critical element of the viral entry to the host cell, and ACE2, its docking site on the host cell surface, are extensively glycosylated, making them challenging targets for native MS. However, supplementing native MS with a gas-phase ion manipulation technique (limited charge reduction) allows meaningful information to be obtained on the non-covalent complexes formed by ACE2 and the receptor-binding domain (RBD) of the S-protein. Using this technique in combination with molecular modeling also allows the role of heparin in destabilizing the ACE2/RBD association to be studied, providing critical information for understanding the molecular mechanism of its interference with the virus docking to the host cell receptor. Both short (pentasaccharide) and relatively long (eicosasaccharide) heparin oligomers form 1:1 complexes with RBD, indicating the presence of a single binding site. This association alters the protein conformation (to maximize the contiguous patch of the positive charge on the RBD surface), resulting in a notable decrease of its ability to associate with ACE2. The destabilizing effect of heparin is more pronounced in the case of the longer chains due to the electrostatic repulsion between the low-pI ACE2 and the heparin segments not accommodated on the RBD surface. In addition to providing important mechanistic information on attenuation of the ACE2/RBD association by heparin, the study demonstrates the yet untapped potential of native MS coupled to gas-phase ion chemistry as a means of facilitating rational repurposing of the existing medicines for treating COVID-19.Abstract Figure


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Ashley Lauren Bennett ◽  
Rory Henderson

The HIV-1 envelope glycoprotein (Env) mediates host cell fusion and is the primary target for HIV-1 vaccine design. The Env undergoes a series of functionally important conformational rearrangements upon engagement of its host cell receptor, CD4. As the sole target for broadly neutralizing antibodies, our understanding of these transitions plays a critical role in vaccine immunogen design. Here, we review available experimental data interrogating the HIV-1 Env conformation and detail computational efforts aimed at delineating the series of conformational changes connecting these rearrangements. These studies have provided a structural mapping of prefusion closed, open, and transition intermediate structures, the allosteric elements controlling rearrangements, and state-to-state transition dynamics. The combination of these investigations and innovations in molecular modeling set the stage for advanced studies examining rearrangements at greater spatial and temporal resolution.


2021 ◽  
Vol 28 ◽  
Author(s):  
Prem Kumar Kushwaha ◽  
Neha Kumari ◽  
Sneha Nayak ◽  
Keshav Kishor ◽  
Ashoke Sharon

: Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARS-CoV-2) initiated in Wuhan city, China, in December 2019 which continued to spread internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutinin-mediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related-viral diseases, including COVID-19. : It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. : The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. : The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at S1/S2 subunit interface in S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and available scope for the new drug discovery process targeting SARS-related virus entry into the host cell.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Erik J. Boll ◽  
Jorge Ayala-Lujan ◽  
Rose L. Szabady ◽  
Christopher Louissaint ◽  
Rachel Z. Smith ◽  
...  

ABSTRACTEnteroaggregativeEscherichia coli(EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen.IMPORTANCEEAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs—the principal adhesins of EAEC—in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.


Author(s):  
Ke Wang ◽  
Wei Chen ◽  
Zheng Zhang ◽  
Yongqiang Deng ◽  
Jian-Qi Lian ◽  
...  

AbstractIn face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Silke Schnell ◽  
Corinne Démollière ◽  
Paul van den Berk ◽  
Heinz Jacobs

Gimap4, a member of the newly identified GTPase of the immunity-associated protein family (Gimap), is strongly induced by the pre–T-cell receptor in precursor T lymphocytes, transiently shut off in double-positive thymocytes, and reappears after TCR-mediated positive selection. Here, we show that Gimap4 remains expressed constitutively in the cytosol of mature T cells. A C-terminal IQ domain binds calmodulin in the absence of calcium, and conserved PKC phosphorylation motifs are targets of concanavalin A (ConA)– or PMA/ionomycin-induced PKC activation. To address the role of Gimap4 in T-cell physiology, we completed the genomic organization of the gimap4 locus and generated a Gimap4-null mutant mouse. Studies in these mice revealed no critical role of Gimap4 in T-cell development but in the regulation of apoptosis. We have found that Gimap4 accelerates the execution of programmed cell death induced by intrinsic stimuli downstream of caspase-3 activation and phosphatidylserine exposure. Apoptosis directly correlates with the phosphorylation status of Gimap4.


2021 ◽  
Author(s):  
Alfred D. Nelson ◽  
Yan Bi ◽  
Baoan Ji

Abstract Background & Aims: Coronavirus-19 (COVID-19) due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) is an ongoing global pandemic causing more than three million deaths. Protease inhibitors had been shown to decrease viral entry. However, the role of dabigatran, an inhibitor of multiple proteases, on coronavirus remains unknown.Methods: MRC-5 cells, HCT-8, or Huh-7 cells were infected with Beta-coronavirus OC43 and SARS-CoV-2. Cytopathic effects (CPE) were monitored by imaging. Viral load was measured by quantitative RT-PCR. Viral protein was detected by Western blot.Results: Camostat, a serine protease inhibitor, had no effect on the replication of OC43 and SARS CoV-2 even at higher doses. Dabigatran inhibited replication, viral entry and CPE of OC43 in a dose-dependent manner. Dabigatran and Remdisivir synergistically inhibited OC43 virus replication. Conclusions: Dabigatran may be beneficial in treating SARS-CoV-2 both for anticoagulation and viral replication inhibition need to be evaluated further.


Sign in / Sign up

Export Citation Format

Share Document