scholarly journals Spatiotemporal dynamics of human attention revealed by intracerebral recording

2021 ◽  
Author(s):  
Tal Seidel Malkinson ◽  
Dimitri J. Bayle ◽  
Alexia Bourgeois ◽  
Katia Lehongre ◽  
Sara Fernandez ◽  
...  

ABSTRACTAttention allows us to rapidly respond to unexpected events, a fundamental capacity for survival. We recorded brain activity from 28 individuals with a total of 1,403 intracortical contacts, while they produced faster manual responses to visual targets preceded by non-predictive attentional cues, which engage exogenous spatial attention. Using a novel spatiotemporal clustering approach, we identified three distinct brain networks: an early visual cluster; an intermediate, predominantly right-hemisphere caudal temporoparietal-prefrontal cluster, sensitive to attentional effects; and a late, predominantly left-hemisphere rostral temporoparietal-prefrontal cluster, sensitive to response-requiring targets. Activity in temporoparietal-prefrontal clusters suggested neural integration of temporally close cues and targets, and was closely related to behavioral responses. These results reveal how cortical networks govern the psychological construct of exogenous attention.One-sentence summaryThe neural basis of human exogenous attention lies in the nexus between perception and action

2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


2012 ◽  
Vol 24 (9) ◽  
pp. 1867-1883 ◽  
Author(s):  
Bradley R. Buchsbaum ◽  
Sabrina Lemire-Rodger ◽  
Candice Fang ◽  
Hervé Abdi

When we have a rich and vivid memory for a past experience, it often feels like we are transported back in time to witness once again this event. Indeed, a perfect memory would exactly mimic the experiential quality of direct sensory perception. We used fMRI and multivoxel pattern analysis to map and quantify the similarity between patterns of activation evoked by direct perception of a diverse set of short video clips and the vivid remembering, with closed eyes, of these clips. We found that the patterns of distributed brain activation during vivid memory mimicked the patterns evoked during sensory perception. Using whole-brain patterns of activation evoked by perception of the videos, we were able to accurately classify brain patterns that were elicited when participants tried to vividly recall those same videos. A discriminant analysis of the activation patterns associated with each video revealed a high degree (explaining over 80% of the variance) of shared representational similarity between perception and memory. These results show that complex, multifeatured memory involves a partial reinstatement of the whole pattern of brain activity that is evoked during initial perception of the stimulus.


2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


2003 ◽  
Vol 89 (5) ◽  
pp. 2516-2527 ◽  
Author(s):  
Laurent Petit ◽  
Michael S. Beauchamp

We used event-related fMRI to measure brain activity while subjects performed saccadic eye, head, and gaze movements to visually presented targets. Two distinct patterns of response were observed. One set of areas was equally active during eye, head, and gaze movements and consisted of the superior and inferior subdivisions of the frontal eye fields, the supplementary eye field, the intraparietal sulcus, the precuneus, area MT in the lateral occipital sulcus and subcortically in basal ganglia, thalamus, and the superior colliculus. These areas have been previously observed in functional imaging studies of human eye movements, suggesting that a common set of brain areas subserves both oculomotor and head movement control in humans, consistent with data from single-unit recording and microstimulation studies in nonhuman primates that have described overlapping eye- and head-movement representations in oculomotor control areas. A second set of areas was active during head and gaze movements but not during eye movements. This set of areas included the posterior part of the planum temporale and the cortex at the temporoparietal junction, known as the parieto-insular vestibular cortex (PIVC). Activity in PIVC has been observed during imaging studies of invasive vestibular stimulation, and we confirm its role in processing the vestibular cues accompanying natural head movements. Our findings demonstrate that fMRI can be used to study the neural basis of head movements and show that areas that control eye movements also control head movements. In addition, we provide the first evidence for brain activity associated with vestibular input produced by natural head movements as opposed to invasive caloric or galvanic vestibular stimulation.


2000 ◽  
Vol 12 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Matti Laine ◽  
Riitta Salmelin ◽  
Päivi Helenius ◽  
Reijo Marttila

Magnetoencephalographic (MEG) changes in cortical activity were studied in a chronic Finnish-speaking deep dyslexic patient during single-word and sentence reading. It has been hypothesized that in deep dyslexia, written word recognition and its lexical-semantic analysis are subserved by the intact right hemisphere. However, in our patient, as well as in most nonimpaired readers, lexical-semantic processing as measured by sentence-final semantic-incongruency detection was related to the left superior-temporal cortex activation. Activations around this same cortical area could be identified in single-word reading as well. Another factor relevant to deep dyslexic reading, the morphological complexity of the presented words, was also studied. The effect of morphology was observed only during the preparation for oral output. By performing repeated recordings 1 year apart, we were able to document significant variability in both the spontaneous activity and the evoked responses in the lesioned left hemisphere even though at the behavioural level, the patient's performance was stable. The observed variability emphasizes the importance of estimating consistency of brain activity both within and between measurements in brain-damaged individuals.


1988 ◽  
Vol 67 (2) ◽  
pp. 555-561 ◽  
Author(s):  
Mary Ann Valentino ◽  
James W. Brown ◽  
W. A. Cronan-Hillix

Aesthetic preferences for photographs with the main focal content either to the left or right of the photograph's center were examined in right- and left-handed subjects. Verbal responses or manual responses were required. In one experiment with 261 introductory psychology student-subjects, left-handers more often preferred photographs with the more important part on the left (“left-geared”) than did right-handers. Exp. 2, involving 84 right-handed student subjects, showed that left-geared photographs presented on the left side were preferred more often than left-geared photographs presented on the right side, and left-geared photographs presented on the left side were more often chosen when a left-handed manual response was required. Interactions between handedness, position of the stimulus, language hemisphere, and response mode make it extremely difficult to ascertain whether the right hemisphere is really more involved in aesthetic decisions.


2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


2019 ◽  
Author(s):  
Paddy Ross ◽  
Beatrice de Gelder ◽  
Frances Crabbe ◽  
Marie-Hélène Grosbras

AbstractEmotions are strongly conveyed by the human body and the ability to recognize emotions from body posture or movement is still developing through childhood and adolescence. To date, there are very few studies exploring how these behavioural observations are paralleled by functional brain development. Furthermore, there are currently no studies exploring the development of emotion modulation in these areas. In the current study, we used functional magnetic resonance imaging (fMRI) to compare the brain activity of 25 children (age 6-11), 18 adolescents (age 12-17) and 26 adults while they passively viewed short videos of angry, happy or neutral body movements. We observed that when viewing bodies generally, adults showed higher activity than children bilaterally in the body-selective areas; namely the extra-striate body area (EBA), fusiform body area (FBA), posterior superior temporal sulcus (pSTS) and amygdala (AMY). Adults also showed higher activity than adolescents, but only in right hemisphere body-selective areas. Crucially, however, we found that there were no age differences in the emotion modulation of activity in these areas. These results indicate, for the first time, that despite activity selective to body perception increasing across childhood and adolescence, emotion modulation of these areas in adult-like from 7 years of age.Conflict of InterestThe author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Sign in / Sign up

Export Citation Format

Share Document