scholarly journals Csf1r-GCaMP5 Reporter Mice Reveal Immune Cell Communication in Vitro and in Vivo

2021 ◽  
Author(s):  
N Taghdiri ◽  
D Calcagno ◽  
Z Fu ◽  
K Huang ◽  
RH Kohler ◽  
...  

ABSTRACTInterconnected cells are responsible for emergent functions ranging from cognition in the brain to cyclic contraction in the heart. In electrically excitable cells, methods for studying cell communication are highly advanced, but in non-excitable cells, generalized methods for studying cell communication are less mature. Immune cells have generally been classified as non-excitable cells with diverse pathophysiologic roles that span every tissue in the body, yet little is known about their interconnectedness because assays are destructive and have low temporal resolution. In this work, we hypothesize that non-excitable immune cells are functionally interconnected in previously unrecognized cell communication networks. To test the hypothesis, we created a hematopoietic calcium reporter mouse (Csf1r-Cre × GCaMP5) and non-destructively quantified the spatiotemporal dynamics of intracellular calcium in vitro and in vivo. In vitro, bone marrow derived macrophages calcium reporters reveal that fatal immune stimulatory DNA-sensing induces rapid intercellular communication to neighboring cells. In vivo, using intravital microscopy through a dorsal window chamber in the context of MC38-H2B-mCherry tumors, Csf1r-GCaMP5 reporters exhibit spatiotemporal dynamics consistent with cell communication. We present a theoretical framework and analysis pipeline for identifying spatiotemporal locations of “excess synchrony” of calcium spiking as a means of inferring previously unrecognized cell communication events. Together, these methods provide a toolkit for investigating known and as-yet-undiscovered cell communication events in vitro and in vivo.

2018 ◽  
Vol 400 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Sander Bekeschus ◽  
Christian Seebauer ◽  
Kristian Wende ◽  
Anke Schmidt

AbstractLeukocytes are professionals in recognizing and removing pathogenic or unwanted material. They are present in virtually all tissues, and highly motile to enter or leave specific sites throughout the body. Less than a decade ago, physical plasmas entered the field of medicine to deliver their delicate mix of reactive species and other physical agents for mainly dermatological or oncological therapy. Plasma treatment thus affects leukocytes via direct or indirect means: immune cells are either present in tissues during treatment, or infiltrate or exfiltrate plasma-treated areas. The immune system is crucial for human health and resolution of many types of diseases. It is therefore vital to study the response of leukocytes after plasma treatmentin vitroandin vivo. This review gathers together the major themes in the plasma treatment of innate and adaptive immune cells, and puts these into the context of wound healing and oncology, the two major topics in plasma medicine.


2021 ◽  
pp. 100132
Author(s):  
Nika Taghdiri ◽  
David M. Calcagno ◽  
Zhenxing Fu ◽  
Kenneth Huang ◽  
Rainer H. Kohler ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4526-4526
Author(s):  
Rahul Palchaudhuri ◽  
Bradley R Pearse ◽  
Jennifer L Proctor ◽  
Sharon L. Hyzy ◽  
Sharon Aslanian ◽  
...  

Abstract Introduction Bone Marrow Transplant (BMT) is a potentially curative treatment for malignant and non-malignant blood disorders and has demonstrated impressive outcomes in autoimmune diseases. Prior to BMT, patients are prepared with high-dose chemotherapy alone or with total body irradiation, and both are associated with early and late morbidities, such as infertility, secondary malignancies and organ toxicity; and substantial risk of mortality. This greatly limits the use of BMT in malignant and non-malignant conditions. To address these issues, we are developing antibody drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) and immune cells to more safely condition patients for BMT. Results To enable simultaneous HSC and immune cell depletion for BMT we investigated targeting human CD45, a protein expressed exclusively on nearly all blood cells including HSCs. Antibody discovery campaigns identified several antibodies with sub-nanomolar affinities for human and non-human primate (NHP) CD45. We then created anti-CD45 ADCs with drug payloads including DNA-damaging, tubulin-targeting and RNA polymerase-inhibiting molecules. An ADC developed with alpha-amanitin (an RNA polymerase II inhibitor) enabled potent in vitro killing of primary human CD34+ HSCs and immune cells (40-120 picomolar IC50s). With this anti-CD45 amanitin ADC (CD45-AM), we explored depletion of HSCs and immune cells in vivo using humanized NSG mice. A single dose of 1 or 3 mg/kg CD45-AM enabled >95% depletion of human CD34+ cells in the bone marrow as assessed 7 or 14 days post-administration (Figure, n = 3/group, p values < 0.05); >95% depletion of human B-, T- and myeloid cells was observed in the periphery and bone marrow (Figure, p values < 0.05). Control non-targeting isotype matched-ADCs and anti-CD45 antibody not bearing a toxin had minimal effect on either HSC or immune cells. In hematopoietic malignancies, an anti-CD45 ADC would ideally reduce disease burden and enable BMT. In a model of acute lymphoblastic leukemia (REH cell line, n = 10 mice/group), and 3 patient-derived models of FLT3+NPM1+ acute myeloid leukemia (n = 4-5 mice/group per model), a single dose of 1 mg/kg CD45-AM more than doubled the median survival and several mice survived disease-free (p values < 0.001). Anti-CD45 antibodies have been investigated for BMT conditioning in patients as naked antibodies that rely on Fc-effector function to deplete lymphocytes (Biol Blood Marrow Transplant. 2003 9(4): 273-81); or as radioimmunotherapy (Blood. 2006 107(5): 2184-2191). These agents demonstrated infusion-related toxicities likely due to effector function elicited by the wild-type IgG backbone. To address this issue, we created anti-CD45 antibodies with reduced Fc-gamma receptor binding that prevented cytokine release in vitro and in humanized mice. As BMT will likely require fast clearing ADCs to avoid depleting the incoming graft, we also created fast-half-life CD45-AM variants with a t½ of 8-15 hours in mice. To determine the safety and pharmacokinetic properties of regular and fast half-life Fc-silent variants in an immune-competent large animal we tested these in cynomolgus monkeys. Single doses (3 mg/kg, iv, n = 3/group) of fast and regular half-life Fc-silent unconjugated anti-CD45 antibodies were both well tolerated in cynomolgus monkeys and displayed pharmacokinetic properties suitable for BMT. Conclusion These results demonstrate that targeting CD45 with an amanitin ADC results in potent in vitro and in vivo human HSC and immune cell depletion. This new CD45-AM ADC also significantly reduced disease burden in multiple leukemia models. Our results indicate Fc-silencing may avoid infusion-related toxicities observed with previous CD45 mAbs. An alpha-amanitin ADC targeted to CD45 may be appropriate for preparing patients for BMT since we hypothesize it may i) be non-genotoxic; ii) effectively deplete both HSC and immune cells; iii) avoid bystander toxicity, due to amanitin's poor cell permeability as a free toxin; and iv) kill cycling and non-cycling cells, the latter being necessary for effective HSC depletion. As our anti-CD45 ADCs are cross-reactive, we are currently investigating their HSC and immune cell depletion activity in vivo in NHPs to enable further preclinical development of these transplant conditioning agents. Disclosures Palchaudhuri: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties; Harvard University: Patents & Royalties. Pearse:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Proctor:Magenta Therapeutics: Employment, Equity Ownership. Hyzy:Magenta Therapeutics: Employment, Equity Ownership. Aslanian:Magenta Therapeutics: Employment, Equity Ownership. McDonough:Magenta Therapeutics: Employment, Equity Ownership. Sarma:Magenta Therapeutics: Employment, Equity Ownership. Brooks:Magenta Therapeutics: Employment, Equity Ownership. Bhat:Magenta Therapeutics: Employment. Ladwig:Magenta Therapeutics: Employment, Equity Ownership. McShea:Magenta Therapeutics: Employment, Equity Ownership. Kallen:Magenta Therapeutics: Employment, Equity Ownership. Li:Magenta Therapeutics: Employment, Equity Ownership. Panwar:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Dushime:Magenta Therapeutics: Employment, Equity Ownership. Sawant:Magenta Therapeutics: Employment, Equity Ownership. Adams:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Lamothe:Magenta Therapeutics: Employment, Equity Ownership. Gabros:Magenta Therapeutics: Employment, Equity Ownership. Kien:Magenta Therapeutics: Employment, Equity Ownership. Gillard:Magenta Therapeutics: Employment, Equity Ownership. McDonagh:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Author(s):  
J. Brandon Dixon

The lymphatic vasculature extends through most tissues of the body and plays an essential role in maintaining fluid balance, immune cell trafficking, and lipid transport. Nearly all dietary lipid is transported from the intestine to the circulation via the lymphatic system in the form of triglyceride-rich lipoproteins called chylomicrons. This process can be described through two different mechanisms: 1) entry of the chylomicron into the initial lymphatic vessels of the small intestine, known as lacteals, and 2) the transport of these chylomicrons through the larger collecting lymphatics by a complex and coordinated system of individual contracting vessel units (lymphangions) and valve leaflets. We describe here a set of in vitro and in vivo tools we have developed to study the mechanisms that modulate lipid transport under these two different paradigms and show how these tools are uncovering important biological features involved in these mechanisms. Lymphatic pump function is known to be sensitive to the mechanical load on the vessel as the contractility of isolated vessels has been shown to be both shear and stretch sensitive [1], yet whether these mechanisms are important in regulating contractile function in vivo remains uncertain.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Juliana Hofstatter Azambuja ◽  
Nils Ludwig ◽  
Saigopalakrishna Yerneni ◽  
Aparna Rao ◽  
Elizandra Braganhol ◽  
...  

Abstract Background Glioblastoma is one of the most immunosuppressive human tumors. Emerging data suggest that glioblastoma-derived exosomes (GBex) reprogram the tumor microenvironment into a tumor-promoting milieu by mechanisms that not yet understood. Methods Exosomes were isolated from supernatants of glioblastoma cell lines by size exclusion chromatography. The GBex endosomal origin, size, protein cargos, and ex vivo effects on immune cell functions were determined. GBex were injected intravenously into mice to evaluate their ability to in vivo modulate normal immune cell subsets. Results GBex carried immunosuppressive proteins, including FasL, TRAIL, CTLA-4, CD39, and CD73, but contained few immunostimulatory proteins. GBex co-incubated with primary human immune cells induced simultaneous activation of multiple molecular pathways. In CD8+ T cells, GBex suppressed TNF-α and INF-γ release and mediated apoptosis. GBex suppressed natural killer (NK) and CD4+ T-cell activation. GBex activated the NF-κB pathway in macrophages and promoted their differentiation into M2 cells. Inhibition of the NF-κB pathway in macrophages reversed the GBex-mediated effects. GBex-driven reprogramming of macrophages involved the release of soluble factors that promoted tumor proliferation in vitro. In mice injected with GBex, the frequency of splenic CD8+ T cells, NK cells, and M1-like macrophages was reduced, while that of naïve and M2-like macrophages increased (P &lt; .05). Conclusions GBex reprogrammed functions of all types of immune cells in vitro and altered their frequency in vivo. By creating and sustaining a highly immunosuppressive environment, GBex play a key role in promoting tumor progression.


2010 ◽  
Vol 31 (2) ◽  
pp. 767-777 ◽  
Author(s):  
Luca Cucullo ◽  
Nicola Marchi ◽  
Mohammed Hossain ◽  
Damir Janigro

Although there is significant evidence correlating overreacting or perhaps misguided immune cells and the blood–brain barrier (BBB) with the pathogenesis of neuroinflammatory diseases, the mechanisms by which they enter the brain are largely unknown. For this purpose, we revised our humanized dynamic in vitro BBB model (DIV-BBBr) to incorporate modified hollow fibers that now feature transmural microholes (2 to 4 μm Ø) allowing for the transendothelial trafficking of immune cells. As with the original model, this new DIV-BBBr reproduces most of the physiological characteristics of the BBB in vivo. Measurements of transendothelial electrical resistance (TEER), sucrose permeability, and BBB integrity during reversible osmotic disruption with mannitol (1.6 mol/L) showed that the microholes do not hamper the formation of a tight functional barrier. The in vivo rank permeability order of sucrose, phenytoin, and diazepam was successfully reproduced in vitro. Flow cessation followed by reperfusion (Fc/Rp) in the presence of circulating monocytes caused a biphasic BBB opening paralleled by a significant increase of proinflammatory cytokines and activated matrix metalloproteinases. We also observed abluminal extravasation of monocytes but only when the BBB was breached. In conclusion, the DIV-BBBr represents the most realistic in vitro system to study the immune cell trafficking across the BBB.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-5

The inaugural issue is introduced by several editorials: "The Story of Precision Nanomedicine-the Journal", "Balancing Interests of Science, Scientists, and the Publishing Business", and "Improving Innovation in Nano-Healthcare Funding". The Clinical Editor's comments on research papers: Prec. Nanomed. 2018, Apr; 1(1):18-42. Extracellular vesicles (EVs) are involved in various biological processes such as cargo trafficking, cell-cell communication, and signal transduction. The advances in nanotechnology have enabled researchers to utilize EVs for potential use in clinical applications, within the so-called precision medicine approach. In this review article, the authors discuss the techniques used in EV isolation in length, together with their applications in clinical diagnosis and therapeutics. Prec. Nanomed. 2018 Apr;1(1):63-75. Due to potential hypersensitivity reactions to nanodrugs, thorough testing is required before these drugs can be used in the clinical setting. Here the authors provide a succinct review on the use of pigs as a reliable in-vivo model for pre-clinical drug testing. Prec. Nanomed. 2018 Apr;1(1):76-85. One of the ways that nanoparticles are cleared in the body is via Kupffer cells. The authors of the next paper tested the role of scavenger receptor SR-AI/II in the clearance of dextran superparamagnetic iron oxide (SPIO) Feridex-IV® and dextran-coated SPIO nanoworms (SPIO NWs). Results here show that multiple pathways and mechanisms exist in nanoparticle clearance. Thus, further understanding of nanoparticle clearance would be required to prolong in vivo half-life. Prec. Nanomed. 2018 Apr;1(1):43-62. Liposomes have been used in clinical practice for some years, this delivery system often result in significant systemic effects due to hypersensitivity reactions, via the activation of the complement system. The authors here show good biocompatibility of Rad-PC-Rad liposomes in terms of complement activation and pro-inflammatory cytokines production in-vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmin Felux ◽  
Annika Erbacher ◽  
Magali Breckler ◽  
Roxane Hervé ◽  
Delphine Lemeiter ◽  
...  

Increased concentrations of circulating chromatin, especially oligo-nucleosomes, are observed in sepsis, cancer and some inflammatory autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, circulating nucleosomes mainly result from increased apoptosis and decreased clearance of apoptotic cells. Once released, nucleosomes behave both as an autoantigen and as a damage-associated molecular pattern (DAMP) by activating several immune cells, especially pro-inflammatory cells. Deoxyribonuclease 1 (DNase1) is a major serum nuclease whose activity is decreased in mouse and human lupus. Likewise, the mitochondrial chaperone tumor necrosis factor (TNF) receptor-associated protein-1 (Trap1) protects against oxidative stress, which is increased in SLE. Here, using wild type, DNase1-deficient and DNase1/Trap1-deficient mice, we demonstrate that DNase1 is a major serum nuclease involved in chromatin degradation, especially when the plasminogen system is activated. In vitro degradation assays show that chromatin digestion is strongly impaired in serum from DNase1/Trap1-deficient mice as compared to wild type mice. In vivo, after injection of purified chromatin, clearance of circulating chromatin is delayed in DNase1/Trap1-deficient mice in comparison to wild type mice. Since defective chromatin clearance may lead to chromatin deposition in tissues and subsequent immune cell activation, spleen cells were stimulated in vitro with chromatin. Splenocytes were activated by chromatin, as shown by interleukin (IL)-12 secretion and CD69 up-regulation. Moreover, cell activation was exacerbated when Trap1 is deficient. Importantly, we also show that cytokines involved in lupus pathogenesis down-regulate Trap1 expression in splenocytes. Therefore, combined low activities of both DNase1 and Trap1 lead to an impaired degradation of chromatin in vitro, delayed chromatin clearance in vivo and enhanced activation of immune cells. This situation may be encountered especially, but not exclusively, in SLE by the negative action of cytokines on Trap1 expression.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yann Cheli ◽  
Meri K. Tulic ◽  
Najla El Hachem ◽  
Nicolas Nottet ◽  
Arnaud Jacquel ◽  
...  

AbstractResistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 107-107
Author(s):  
Jan Dörr ◽  
Selina Keppler ◽  
Maja Milanovic ◽  
Simone Spieckermann ◽  
Peter Aichele ◽  
...  

Abstract Abstract 107 Introduction: Premature senescence is a cellular failsafe mechanism which is induced upon various cellular insults, such as oncogene activation or exposure to DNA damaging chemotherapy. It suppresses tumor formation and acts as a barrier to tumor progression in vivo. In contrast to apoptotic cells, senescent cells are viably arrested in the G1 phase of the cell cycle. They continue to take up nutrients and interact with tumor and host cells. To what extent senescent cells alter the tumor environment and tumor-host interactions remains largely unsolved. Here, we analyze lymphoma cells with defined genetic lesions, e.g. deletion of the histone H3 lysine 9 methyltransferase Suv39h1 (controlling senescence) and p53 (mediating both apoptosis and senescence), for their influence on immunological tumor-host interactions as a consequence of therapy-induced senescence (TIS) in the Eμ-myc mouse lymphoma model. Our data demonstrate for the first time a senescence-primed T-cell response against lymphoma cells in vitro and in vivo. Methods: Lymphoma cells (LCs) from different genetic were retrovirally transduced with the bcl2 gene to block apoptosis. Subsequently, they were treated with the DNA damaging anticancer agent adriamycin in vitro or the alkylating agent cyclophosphamide upon lymphoma formation in normal immunocompetent mice in vivo. Therapy-inducible senescence (TIS) was detected based on senescence-associated b-galactosidase activity (SA-b-gal), Ki67 staining and BrdU incorporation. The cytokine profile of senescent LCs was analysed by gene expression and protein arrays. Infiltration and activation of immune cells in TIS lymphomas was analysed by immunohistochemistry and flow cytometry with leukocyte-specific antibodies. Immune responses elicited upon TIS induction in vivo were further analysed in gld (generalized lymphoproliferative disease) mice, which lack functional FasL and by systemic depletion of macrophages after clodronate administration. Pharmaceutical inhibitors of FasL and perforin and IFNg knockout mice were used to analyze T-cell mediated cytotoxity in vitro. Results: TIS lymphoma cells, but not Suv39h1- or p53-deficient LCs, upregulate the secretion of pro-inflammatory cytokines, such as IL6 and IL12, with pro-inflammatory on tumor and bystander cells. In vivo, TIS correlates with the attraction of immune cells, particularly macrophages and T cells, to the tumor site. Senescent LCs became sensitive to both macrophage engulfment and death receptor (Fas)-mediated apoptosis. Activation of both CD4 and CD8 T cells leads to production of IFNg and clearing of senescent cells. Clearance can be attenuated by systemic depletion of macrophages and interference with T cell-mediated programmed cell death. T-cells specifically primed by TIS cells in vivo potently killed both senescent and proliferating LCs after isolation and co-incubation in vitro. In vivo clearance of TIS LCs was attenuated by systemic depletion of macrophages or by interference with T-cell-mediated programmed cell death. Lymphoma-bearing gld mice presented with a reduced overall survival when compared to wild-type host mice. Discussion: This study demonstrates that therapy-induced senescence drives a profound remodeling of the tumor site after therapy and unveils functional interactions of senescent LCs with different immune cell subsets in vitro and in vivo. Senescent cells secrete a cytokine program, which stimulates immune cell attraction and an adaptive and presumably lastingly protective immune response. Thus, TIS is a highly dynamic and interdependent process whose paracrine effects and immune cell interactions account for regression of the senescent mass and present an attractive target network for novel therapeutic strategies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document