scholarly journals Epileptic Spike Detection by Recurrent Neural Networks with Self-Attention Mechanism

2021 ◽  
Author(s):  
Kosuke Fukumori ◽  
Noboru Yoshida ◽  
Hidenori Sugano ◽  
Madoka Nakajima ◽  
Toshihisa Tanaka

Automated identification of epileptiform discharges for the diagnosis of epilepsy can mitigate the burden of the exhaustive manual search in electroencephalogram (EEG). Recent studies have indicated that a two-step method that consists of detection of candidate waveforms with signal processing and pattern matching followed by machine learning-based classification is effective. However, the overall performance depends on the detector of candidates. This paper thus considers a scenario without candidate waveforms, that is, we propose a recurrent neural network (RNN)-based self-attention model that can be fitted from the EEG segments generated without detecting spike candidates. In comparison with the state-of-the-art machine learning models which can be applied for EEG classification (LightGBM and EEGNet), the proposed model achieved higher performance (average accuracy: 90.2 %). This result strongly suggests that the self-attention mechanism is suitable to an automated identification of the epileptiform discharge in the EEG.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2388
Author(s):  
Sk Mahmudul Hassan ◽  
Michal Jasinski ◽  
Zbigniew Leonowicz ◽  
Elzbieta Jasinska ◽  
Arnab Kumar Maji

Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively.


2021 ◽  
Vol 11 (22) ◽  
pp. 10906
Author(s):  
Meiyan Xu ◽  
Junfeng Yao ◽  
Hualiang Ni

Event-Related Desynchronization (ERD) or Electroencephalogram (EEG) wavelet is essential for motor imagery (MI) classification and BMI (Brain–Machine Interface) application. However, it is difficult to recognize multiple tasks for non-trained subjects that are indispensable for the complexities of the task or the uncertainties in the environment. The subject-independent scenario, where an inter-subject trained model can be directly applied to new users without precalibration, is particularly desired. Therefore, this paper focuses on an effective attention mechanism which can be applied to a subject-independent set to learn EEG motor imagery features. Firstly, a custom form of sequence inputs with spatial and temporal dimensions is adopted for dual headed attention via deep convolution net (DHDANet). Secondly, DHDANet simultaneously learns temporal and spacial features. The features of spacial attention on each input head are divided into two parts for spatial attentional learning subsequently. The proposed model is validated based on the EEG-MI signals collected from 54 subjects in two sessions with 200 trials in each sessions. The classification of left and right hand motor imagery in this paper achieves an average accuracy of 75.52%, a significant improvement compared to state-of-the-art methods. In addition, the visualization of the frequency analysis method demonstrates that the temporal-convolution and spectral-attention is capable of identifying the ERD for EEG-MI. The proposed machine learning structure enables cross-session and cross-subject classification and makes significant progress in the BMI transfer learning problem.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


2021 ◽  
Vol 40 (5) ◽  
pp. 9471-9484
Author(s):  
Yilun Jin ◽  
Yanan Liu ◽  
Wenyu Zhang ◽  
Shuai Zhang ◽  
Yu Lou

With the advancement of machine learning, credit scoring can be performed better. As one of the widely recognized machine learning methods, ensemble learning has demonstrated significant improvements in the predictive accuracy over individual machine learning models for credit scoring. This study proposes a novel multi-stage ensemble model with multiple K-means-based selective undersampling for credit scoring. First, a new multiple K-means-based undersampling method is proposed to deal with the imbalanced data. Then, a new selective sampling mechanism is proposed to select the better-performing base classifiers adaptively. Finally, a new feature-enhanced stacking method is proposed to construct an effective ensemble model by composing the shortlisted base classifiers. In the experiments, four datasets with four evaluation indicators are used to evaluate the performance of the proposed model, and the experimental results prove the superiority of the proposed model over other benchmark models.


2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


2021 ◽  
Vol 10 (4) ◽  
pp. 570
Author(s):  
María A Callejon-Leblic ◽  
Ramon Moreno-Luna ◽  
Alfonso Del Cuvillo ◽  
Isabel M Reyes-Tejero ◽  
Miguel A Garcia-Villaran ◽  
...  

The COVID-19 outbreak has spread extensively around the world. Loss of smell and taste have emerged as main predictors for COVID-19. The objective of our study is to develop a comprehensive machine learning (ML) modelling framework to assess the predictive value of smell and taste disorders, along with other symptoms, in COVID-19 infection. A multicenter case-control study was performed, in which suspected cases for COVID-19, who were tested by real-time reverse-transcription polymerase chain reaction (RT-PCR), informed about the presence and severity of their symptoms using visual analog scales (VAS). ML algorithms were applied to the collected data to predict a COVID-19 diagnosis using a 50-fold cross-validation scheme by randomly splitting the patients in training (75%) and testing datasets (25%). A total of 777 patients were included. Loss of smell and taste were found to be the symptoms with higher odds ratios of 6.21 and 2.42 for COVID-19 positivity. The ML algorithms applied reached an average accuracy of 80%, a sensitivity of 82%, and a specificity of 78% when using VAS to predict a COVID-19 diagnosis. This study concludes that smell and taste disorders are accurate predictors, with ML algorithms constituting helpful tools for COVID-19 diagnostic prediction.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4846
Author(s):  
Dušan Marković ◽  
Dejan Vujičić ◽  
Snežana Tanasković ◽  
Borislav Đorđević ◽  
Siniša Ranđić ◽  
...  

The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insect’s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1613
Author(s):  
Man Li ◽  
Feng Li ◽  
Jiahui Pan ◽  
Dengyong Zhang ◽  
Suna Zhao ◽  
...  

In addition to helping develop products that aid the disabled, brain–computer interface (BCI) technology can also become a modality of entertainment for all people. However, most BCI games cannot be widely promoted due to the poor control performance or because they easily cause fatigue. In this paper, we propose a P300 brain–computer-interface game (MindGomoku) to explore a feasible and natural way to play games by using electroencephalogram (EEG) signals in a practical environment. The novelty of this research is reflected in integrating the characteristics of game rules and the BCI system when designing BCI games and paradigms. Moreover, a simplified Bayesian convolutional neural network (SBCNN) algorithm is introduced to achieve high accuracy on limited training samples. To prove the reliability of the proposed algorithm and system control, 10 subjects were selected to participate in two online control experiments. The experimental results showed that all subjects successfully completed the game control with an average accuracy of 90.7% and played the MindGomoku an average of more than 11 min. These findings fully demonstrate the stability and effectiveness of the proposed system. This BCI system not only provides a form of entertainment for users, particularly the disabled, but also provides more possibilities for games.


2021 ◽  
Vol 15 (1) ◽  
pp. 151-160
Author(s):  
Hemant P. Kasturiwale ◽  
Sujata N. Kale

The Autonomous Nervous System (ANS) controls the nervous system and Heart Rate Variability (HRV) can be used as a diagnostic tool to diagnose heart defects. HRV can be classified into linear and nonlinear HRV indices which are used mostly to measure the efficiency of the model. For prediction of cardiac diseases, the selection and extraction features of machine learning model are effective. The available model used till date is based on HRV indices to predict the cardiac diseases accurately. The model could hardly throw light on specifics of indices, selection process and stability of the model. The proposed model is developed considering all facet electrocardiogram amplitude (ECG), frequency components, sampling frequency, extraction methods and acquisition techniques. The machine learning based model and its performance shall be tested using the standard BioSignal method, both on the data available and on the data obtained by the author. This is unique model developed by considering the vast number of mixtures sets and more than four complex cardiac classes. The statistical analysis is performed on a variety of databases such as MIT/BIH Normal Sinus Rhythm (NSR), MIT/BIH Arrhythmia (AR) and MIT/BIH Atrial Fibrillation (AF) and Peripheral Pule Analyser using feature compatibility techniques. The classifiers are trained for prediction with approximately 40000 sets of parameters. The proposed model reaches an average accuracy of 97.87 percent and is sensitive and précised. The best features are chosen from the different HRV features that will be used for classification. The present model was checked under all possible subject scenarios, such as the raw database and the non-ECG signal. In this sense, robustness is defined not only by the specificity parameter, but also by other measuring output parameters. Support Vector Machine (SVM), K-nearest Neighbour (KNN), Ensemble Adaboost (EAB) with Random Forest (RF) are tested in a 5% higher precision band and a lower band configuration. The Random Forest has produced better results, and its robustness has been established.


Sign in / Sign up

Export Citation Format

Share Document