scholarly journals Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer

2021 ◽  
Author(s):  
Yang Joon Kim ◽  
Kaitlin Rhee ◽  
Jonathan Liu ◽  
Paul Jeammet ◽  
Meghan A Turner ◽  
...  

A challenge in quantitative biology is to predict output patterns of gene expression from knowledge of input transcription factor patterns and from the arrangement of binding sites for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic models could be used to infer parameters describing simple regulatory architectures that inform parameter-free predictions of more complex enhancers in the context of transcriptional repression by Runt in the early fruit fly embryo. By modulating the number and placement of Runt binding sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, we discovered that thermodynamic models call for higher-order cooperativity between multiple molecular players. This higher-order cooperativity capture the combinatorial complexity underlying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory architectures, highlighting the challenges in reaching a predictive understanding of transcriptional regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular nature.

2018 ◽  
Author(s):  
E. Shannon Torres ◽  
Roger B. Deal

ABSTRACTPlants adapt to changes in their environment by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM act both cooperatively and antagonistically to contribute directly to transcriptional repression and activation of genes involved in development and response to environmental stimuli. We identified 8 classes of genes that show distinct relationships between H2A.Z and BRM and their roles in transcription. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes and/or repositions flanking nucleosomes. H2A.Z and BRM contribute to +1 nucleosome destabilization, especially where they coordinately regulate transcription. We also found that at genes regulated by both BRM and H2A.Z, both factors overlap with the binding sites of light-regulated transcription factors PIF4, PIF5, and FRS9, and that some of the FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated their interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-specific roles within diverse chromatin environments than previously assumed.


2005 ◽  
Vol 187 (3) ◽  
pp. 912-922 ◽  
Author(s):  
Jack S. Ikeda ◽  
Anuradha Janakiraman ◽  
David G. Kehres ◽  
Michael E. Maguire ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium has two manganese transport systems, MntH and SitABCD. MntH is a bacterial homolog of the eukaryotic natural resistance-associated macrophage protein 1 (Nramp1), and SitABCD is an ABC-type transporter. Previously we showed that mntH is negatively controlled at the transcriptional level by the trans-acting regulatory factors, MntR and Fur. In this study, we examined the transcriptional regulation of sitABCD and compared it to the transcriptional regulation of mntH by constructing lacZ fusions to the promoter regions with and without mutations in putative MntR and/or Fur binding sites. The presence of Mn caused transcriptional repression of the sitABCD and mntH promoters primarily via MntR, but Fur was also capable of some repression in response to Mn. Likewise, Fe in the medium repressed transcription of both sit and mntH primarily via Fur, although MntR was also involved in this response. Transcriptional control by MntR and Fur was disrupted by site-specific mutations in the putative MntR and Fur binding sites, respectively. Transcription of the sit operon was also affected by the oxygen level and growth phase, but the increased expression observed under high oxygen conditions and higher cell densities is consistent with decreased availability of metals required for repression by the metalloregulatory proteins.


2019 ◽  
Vol 48 (1) ◽  
pp. 121-163 ◽  
Author(s):  
Rob Phillips ◽  
Nathan M. Belliveau ◽  
Griffin Chure ◽  
Hernan G. Garcia ◽  
Manuel Razo-Mejia ◽  
...  

It is tempting to believe that we now own the genome. The ability to read and rewrite it at will has ushered in a stunning period in the history of science. Nonetheless, there is an Achilles’ heel exposed by all of the genomic data that has accrued: We still do not know how to interpret them. Many genes are subject to sophisticated programs of transcriptional regulation, mediated by DNA sequences that harbor binding sites for transcription factors, which can up- or down-regulate gene expression depending upon environmental conditions. This gives rise to an input–output function describing how the level of expression depends upon the parameters of the regulated gene—for instance, on the number and type of binding sites in its regulatory sequence. In recent years, the ability to make precision measurements of expression, coupled with the ability to make increasingly sophisticated theoretical predictions, has enabled an explicit dialogue between theory and experiment that holds the promise of covering this genomic Achilles’ heel. The goal is to reach a predictive understanding of transcriptional regulation that makes it possible to calculate gene expression levels from DNA regulatory sequence. This review focuses on the canonical simple repression motif to ask how well the models that have been used to characterize it actually work. We consider a hierarchy of increasingly sophisticated experiments in which the minimal parameter set learned at one level is applied to make quantitative predictions at the next. We show that these careful quantitative dissections provide a template for a predictive understanding of the many more complex regulatory arrangements found across all domains of life.


2016 ◽  
Author(s):  
Marta Melé ◽  
Kaia Mattioli ◽  
William Mallard ◽  
David M Shechner ◽  
Chiara Gerhardinger ◽  
...  

ABSTRACTWhile long intergenic noncoding RNAs (lincRNAs) and mRNAs share similar biogenesis pathways, these transcript classes differ in many regards. LincRNAs are less evolutionarily conserved, less abundant, and more tissue-specific, suggesting that their pre‐ and post-transcriptional regulation is different from that of mRNAs. Here, we perform an in-depth characterization of the features that contribute to lincRNA regulation in multiple human cell lines. We find that lincRNA promoters are depleted of transcription factor (TF) binding sites, yet enriched for some specific factors such as GATA and FOS relative to mRNA promoters. Surprisingly, we find that H3K9me3—a histone modification typically associated with transcriptional repression—is more enriched at the promoters of active lincRNA loci than at those of active mRNAs. Moreover, H3K9me3-marked lincRNA genes are more tissue-specific. The most discriminant differences between lincRNAs and mRNAs involve splicing. LincRNAs are less efficiently spliced, which cannot be explained by differences in U1 binding or the density of exonic splicing enhancers, but may be partially attributed to lower U2AF65 binding and weaker splicing–related motifs. Conversely, the stability of lincRNAs and mRNAs is similar, differing only with regard to the location of stabilizing protein binding sites. Finally, we find that certain transcriptional properties are correlated with higher evolutionary conservation in both DNA and RNA motifs, and are enriched in lincRNAs that have been functionally characterized.


Author(s):  
Zhengyi Cao ◽  
Yuning Cheng ◽  
Jiyin Wang ◽  
Yujuan Liu ◽  
Ruixiang Yang ◽  
...  

Abstract Background Hepatoma is a common malignancy of the liver. The abnormal high expression of alpha-fetoprotein (AFP) is intimately associated with hepatoma progress, but the mechanism of transcriptional regulation and singularly activation of AFP gene in hepatoma is not clear. Methods The expression of transcription factor HBP1 and AFP and clinical significance were further analyzed in hepatoma tissues from the patients who received surgery or TACE and then monitored for relapse for up 10 years. HBP1-mediated transcriptional regulation of AFP was analyzed by Western blotting, Luciferase assay, Realtime-PCR, ChIP and EMSA. After verified the axis of HBP-AFP, its impact on hepatoma was measured by MTT, Transwell and FACS in hepatoma cells and by tumorigenesis in HBP1−/− mice. Results The relative expressions of HBP1 and AFP correlated with survival and prognosis in hepatoma patients. HBP1 repressed the expression of AFP gene by directly binding to the AFP gene promoter. Hepatitis B Virus (HBV)-encoded protein HBx promoted malignancy in hepatoma cells through binding to HBP1 directly. Icaritin, an active ingredient of Chinese herb epimedium, inhibited malignancy in hepatoma cells through enhancing HBP1 transrepression of AFP. The repression of AFP by HBP1 attenuated AFP effect on PTEN, MMP9 and caspase-3, thus inhibited proliferation and migration, and induced apoptosis in hepatoma cells. The deregulation of AFP by HBP1 contributed to hepatoma progression in mice. Conclusions Our data clarify the mechanism of HBP1 in inhibiting the expression of AFP and its suppression in malignancy of hepatoma cells, providing a more comprehensive theoretical basis and potential solutions for the diagnosis and treatment of hepatoma.


2010 ◽  
Vol 10 (1) ◽  
pp. 130 ◽  
Author(s):  
Anjanirina Rahantamalala ◽  
Philippe Rech ◽  
Yves Martinez ◽  
Nicole Chaubet-Gigot ◽  
Jacqueline Grima-Pettenati ◽  
...  

1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


1994 ◽  
Vol 14 (3) ◽  
pp. 1721-1732 ◽  
Author(s):  
C A Bunker ◽  
R E Kingston

The Polycomb group (Pc-G) genes are essential for maintaining the proper spatially restricted expression pattern of the homeotic loci during Drosophila development. The Pc-G proteins appear to function at target loci to maintain a state of transcriptional repression. The murine oncogene bmi-1 has significant homology to the Pc-G gene Posterior sex combs (Psc) and a highly related gene, Suppressor two of zeste [Su(z)2]. We show here that the proteins encoded by bmi-1 and the Pc-G genes Polycomb (Pc) and Psc as well as Su(z)2 mediate repression in mammalian cells when targeted to a promoter by LexA in a cotransfection system. These fusion proteins repress activator function by as much as 30-fold, and the effect on different activation domains is distinct for each Pc-G protein. Repression is observed when the LexA fusion proteins are bound directly adjacent to activator binding sites and also when bound 1,700 bases from the promoter. These data demonstrate that the products of the Pc-G genes can significantly repress activator function on transiently introduced DNA. We suggest that this function contributes to the stable repression of targeted loci during development.


2015 ◽  
Author(s):  
Javier Estrada ◽  
Teresa Ruiz-Herrero ◽  
Clarissa Scholes ◽  
Zeba Wunderlich ◽  
Angela DePace

DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/


Sign in / Sign up

Export Citation Format

Share Document