scholarly journals Stop Bickering! Reconciling Signaling Pathway Databases with Network Topologies

2021 ◽  
Author(s):  
Tobias Rubel ◽  
Pramesh Singh ◽  
Anna Ritz

A major goal of molecular systems biology is to understand the coordinated function of genes or proteins in response to cellular signals and to understand these dynamics in the context of disease. Signaling pathway databases such as KEGG, NetPath, NCI-PID, and Panther describe the molecular interactions involved in different cellular responses. While the same pathway may be present in different databases, prior work has shown that the particular proteins and interactions differ across database annotations. However, to our knowledge no one has attempted to quantify their structural differences. It is important to characterize artifacts or other biases within pathway databases, which can provide a more informed interpretation for downstream analyses. In this work, we consider signaling pathways as graphs and we use topological measures to study their structure. We find that topological characterization using graphlets (small, connected subgraphs) distinguishes signaling pathways from appropriate null models of interaction networks. Next, we quantify topological similarity across pathway databases. Our analysis reveals that the pathways harbor database-specific characteristics implying that even though these databases describe the same pathways, they tend to be systematically different from one another. We show that pathway-specific topology can be uncovered after accounting for database-specific structure. This work present the first step towards elucidating common pathway structure beyond their specific database annotations.

2020 ◽  
Author(s):  
Tobias Rubel ◽  
Anna Ritz

AbstractSignaling pathways drive cellular response, and understanding such pathways is fundamental to molecular systems biology. A mounting volume of experimental protein interaction data has motivated the development of algorithms to computationally reconstruct signaling pathways. However, existing methods suffer from low recall in recovering protein interactions in ground truth pathways, limiting our confidence in any new predictions for experimental validation. We present the Pathway Reconstruction AUGmenter (PRAUG), a higher-order function for producing high-quality pathway reconstruction algorithms. PRAUG modifies any existing pathway reconstruction method, resulting in augmented algorithms that outperform their un-augmented counterparts for six different algorithms across twenty-nine diverse signaling pathways. The algorithms produced by PRAUG collectively reveal potential new proteins and interactions involved in the Wnt and Notch signaling pathways. PRAUG offers a valuable framework for signaling pathway prediction and discovery.


2019 ◽  
Author(s):  
Nicholas Franzese ◽  
Adam Groce ◽  
T. M. Murali ◽  
Anna Ritz

AbstractCharacterizing cellular responses to different extrinsic signals is an active area of research, and curated pathway databases describe these complex signaling reactions. Here, we revisit a fundamental question in signaling pathway analysis: are two molecules “connected” in a network? This question is the first step towards understanding the potential influence of molecules in a pathway, and the answer depends on the choice of modeling framework. We examined the connectivity of Reactome signaling pathways using four different pathway representations. We find that Reactome is very well connected as a graph, moderately well connected as a compound graph or bipartite graph, and poorly connected as a hypergraph (which captures many-to-many relationships in reaction networks). We present a novel relaxation of hypergraph connectivity that iteratively increases connectivity from a node while preserving the hypergraph topology. This measure, B-relaxation distance, provides a parameterized transition between hypergraph connectivity and graph connectivity. B-relaxation distance is sensitive to the presence of small molecules that participate in many functionally unrelated reactions in the network. We also define a score that quantifies one pathway’s downstream influence on another, which can be calculated as B-relaxation distance gradually relaxes the connectivity constraint in hypergraphs. Computing this score across all pairs of 34 Reactome pathways reveals pairs of pathways statistically significant influence. We present two such case studies, and we describe the specific reactions that contribute to the large influence score. Finally, we investigate the ability for connectivity measures to capture functional relationships among proteins, and use the evidence channels in the STRING database as a benchmark dataset. STRING interactions whose proteins are B-connected in Reactome have statistically significantly higher scores than interactions connected in the bipartite graph representation. Our method lays the groundwork for other generalizations of graph-theoretic concepts to hypergraphs in order to facilitate signaling pathway analysis.Author summarySignaling pathways describe how cells respond to external signals through molecular interactions. As we gain a deeper understanding of these signaling reactions, it is important to understand how molecules may influence downstream responses and how pathways may affect each other. As the amount of information in signaling pathway databases continues to grow, we have the opportunity to analyze properties about pathway structure. We pose an intuitive question about signaling pathways: when are two molecules “connected” in a pathway? This answer varies dramatically based on the assumptions we make about how reactions link molecules. Here, examine four approaches for modeling the structural topology of signaling pathways, and present methods to quantify whether two molecules are “connected” in a pathway database. We find that existing approaches are either too permissive (molecules are connected to many others) or restrictive (molecules are connected to a handful of others), and we present a new measure that offers a continuum between these two extremes. We then expand our question to ask when an entire signaling pathway is “downstream” of another pathway, and show two case studies from the Reactome pathway database that uncovers pathway influence. Finally, we show that the strict notion of connectivity can capture functional relationships among proteins using an independent benchmark dataset. Our approach to quantify connectivity in pathways considers a biologically-motivated definition of connectivity, laying the foundation for more sophisticated analyses that leverage the detailed information in pathway databases.


2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Kashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Ashif Iqubal ◽  
Sadaf Saleem ◽  
Madan Mohan Gupta ◽  
...  

: At present, skin cancer is a widespread malignancy in human beings. Among diverse population types, Caucasian populations are much more prone in comparison to darker skin populations due to the comparative lack of skin pigmentation. Skin cancer is divided into malignant and non-melanoma skin cancer, which is additionally categorized as basal and squamous cell carcinoma. The exposure to ultraviolet radiation, chemical carcinogen (polycyclic aromatic hydrocarbons, arsenic, tar, etc.), and viruses (herpes virus, human papillomavirus, and human T-cell leukemia virus type-1) are major contributing factors of skin cancer. There are distinct pathways available through which skin cancer develops, such as the JAKSTAT pathway, Akt pathway, MAPKs signaling pathway, Wnt signaling pathway, to name a few. Currently, several targeted treatments are available, such as monoclonal antibodies, which have dramatically changed the line of treatment of this disease but possess major therapeutic limitations. Thus, recently many phytochemicals have been evaluated either alone or in combination with the existing synthetic drugs to overcome their limitations and have found to play a promising role in the prevention and treatment. In this review, complete tracery of skin cancer, starting from the signaling pathways involved, newer developed drugs with their targets and limitations along with the emerging role of natural products alone or in combination as potent anticancer agents and their molecular mechanism involved has been discussed. Apart from this, various nanocargos have also been mentioned here, which can play a significant role in the management and treatment of different types of skin cancer.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Liu ◽  
Hongmiao Ren ◽  
Jihao Ren ◽  
Tuanfang Yin ◽  
Bing Hu ◽  
...  

Cholesteatoma is a benign keratinizing and hyper proliferative squamous epithelial lesion of the temporal bone. Epidermal growth factor (EGF) is one of the most important cytokines which has been shown to play a critical role in cholesteatoma. In this investigation, we studied the effects of EGF on the proliferation of keratinocytes and EGF-mediated signaling pathways underlying the pathogenesis of cholesteatoma. We examined the expressions of phosphorylated EGF receptor (p-EGFR), phosphorylated Akt (p-Akt), cyclinD1, and proliferating cell nuclear antigen (PCNA) in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium by immunohistochemical method. Furthermore,in vitrostudies were performed to investigate EGF-induced downstream signaling pathways in primary external auditory canal keratinocytes (EACKs). The expressions of p-EGFR, p-Akt, cyclinD1, and PCNA in cholesteatoma epithelium were significantly increased when compared with those of control subjects. We also demonstrated that EGF led to the activation of the EGFR/PI3K/Akt/cyclinD1 signaling pathway, which played a critical role in EGF-induced cell proliferation and cell cycle progression of EACKs. Both EGFR inhibitor AG1478 and PI3K inhibitor wortmannin inhibited the EGF-induced EGFR/PI3K/Akt/cyclinD1 signaling pathway concomitantly with inhibition of cell proliferation and cell cycle progression of EACKs. Taken together, our data suggest that the EGFR/PI3K/Akt/cyclinD1 signaling pathway is active in cholesteatoma and may play a crucial role in cholesteatoma epithelial hyper-proliferation. This study will facilitate the development of potential therapeutic targets for intratympanic drug therapy for cholesteatoma.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 82-83
Author(s):  
Xiaoya Zhao ◽  
Qianru Hui ◽  
Paula Azevedo ◽  
Karmin O ◽  
Chengbo Yang

Abstract The calcium-sensing receptor (CaSR) is a pivotal regulator of calcium homeostasis. Our previous study has found that pig CaSR (pCaSR) is widely expressed in intestinal segments in weaned piglets. To characterize the activation of pCaSR by potential ligands and related cell signaling pathways, a dual-luciferase reporter assay was employed for the ligands screening and molecular docking was utilized to predict the binding mode of identified ligands. Our results showed that the dual-luciferase reporter assay system was well suited for pCaSR research and its ligand screening. The extracellular calcium activated pCaSR in a concentration-dependent manner with a half-maximal effective concentration (EC50) = 4.74 mM through the Gq/11 signaling pathway, EC50 = 2.85 mM through extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation signaling pathway, and EC50 = 2.26 mM through the Ras homolog family member A (RhoA) activation signaling pathway. Moreover, the activation of pCaSR stimulated by extracellular calcium showed biased agonism through three main signaling pathways: ERK1/2 phosphorylation signaling, Gq/11 signaling, and G12/13 signaling. Both L-Tryptophan and α-casein (90–95) could activate the pCaSR in the presence of extracellular calcium. Furthermore, we characterized the L-tryptophan binding pocket formed by pCaSR residues TRP 70, SER 147, ALA168, SER 169, SER 170, ASP 190, GLU 297, ALA 298, and ILE 416, as well as the α-casein (90–95) binding pocket formed by pCaSR residues PRO188, ASN189, GLU191, HIS192, LYS225, LEU242, ASP480, VAL486, GLY487, VAL513, and TYR514. In conclusion, similar to the human CaSR, the pCaSR also shows biased agonism through three main signaling pathways and both α-casein (90–95) and L-tryptophan are agonists for pCaSR. Furthermore, the binding sites of α-casein (90–95) and L-tryptophan are mainly located within the extracellular domain of pCaSR.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Alejandro Zimman ◽  
Bjoern Titz ◽  
Evangelia Komisopoulou ◽  
Thomas G Graeber ◽  
Eugene A Podrez

We previously showed that specific oxidized phospholipids (oxPC CD36 ) activate platelets via the scavenger receptor CD36 and promote platelet hyper-reactivity in hyperlipidemia, however the signaling pathway(s) induced in platelets by oxPC CD36 are not defined. We employed mass spectrometry-based phosphoproteomics for the unbiased analysis of changes in protein phosphorylation induced by oxPC CD36 and thrombin, a strong platelet agonist, in human platelets. oxPC CD36 induced changes in phosphorylation of 148 unique phosphorylation sites (116 proteins) while thrombin induced changes of 297 unique sites (181 proteins). Most of the changes in phosphorylation induced by oxPC CD36 and thrombin identified in our study have never been reported before in platelets and include high- and low-abundant proteins with diverse molecular functions located in the plasma membrane, cytosol, or cytoskeleton. Analysis using multiple bioinformatic tools identified protein interaction networks, signaling pathways, activated kinases, and enriched phosphorylation motifs. Comparison between platelet agonists revealed multiple differences including the specific activation of a signaling pathway involving Src-family kinases (SFK), SYK kinase, and PLCγ2 by oxPC CD36 . Subsequent biochemical studies in human platelets demonstrated that this pathway is critical for platelet activation by oxPC CD36 and is downstream of CD36. In conclusion, systematic analysis of platelet activation pathways provided novel insights into the mechanism of platelet activation and specific signaling pathways induced by oxidized phospholipids that modulate platelet function in vivo in hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document