scholarly journals Spatiotemporal NF-κB dynamics encodes the position, amplitude and duration of local immune inputs

2021 ◽  
Author(s):  
Minjun Son ◽  
Tino Frank ◽  
Thomas Holst-Hansen ◽  
Andrew G Wang ◽  
Michael Junkin ◽  
...  

Infected cells communicate through secreted signaling molecules like cytokines, which inform nearby cells about the type, severity and location of pathogens. How differences in cytokine secretion affect inflammatory signaling over space and time, and how responding cells decode information from propagating cytokine signals are not understood. By computationally and experimentally studying NF-κB dynamics in co-cultures of signal sending cells (macrophages) and receiving cells (fibroblasts), we found that cytokine signals are transmitted by wave-like propagation of NF-κB activity and create well-defined cellular activation zones in a responding cell population. Remarkably, NF-κB dynamics in responding cells can simultaneously encode information about cytokine dose, duration, and distance to the cytokine source. Spatially-resolved transcriptional analysis revealed that responding cells transmit local cytokine information to distance specific pro-inflammatory gene expression patterns, creating gene expression zones in the population. Despite single-cell variability, the size and duration of the signaling zone is tightly controlled by the macrophage cytokine secretion profile. Our results highlight how macrophages tune their cytokine secretion dynamics to control signal transmission distance, and how NF-κB interprets these signals to coordinate inflammatory response in space and time.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shauna Kehoe ◽  
Katarina Jewgenow ◽  
Paul R. Johnston ◽  
Susan Mbedi ◽  
Beate C. Braun

AbstractIn vitro growth (IVG) of dormant primordial ovarian follicles aims to produce mature competent oocytes for assisted reproduction. Success is dependent on optimal in vitro conditions complemented with an understanding of oocyte and ovarian follicle development in vivo. Complete IVG has not been achieved in any other mammalian species besides mice. Furthermore, ovarian folliculogenesis remains sparsely understood overall. Here, gene expression patterns were characterised by RNA-sequencing in primordial (PrF), primary (PF), and secondary (SF) ovarian follicles from Felis catus (domestic cat) ovaries. Two major transitions were investigated: PrF-PF and PF-SF. Transcriptional analysis revealed a higher proportion in gene expression changes during the PrF-PF transition. Key influencing factors during this transition included the interaction between the extracellular matrix (ECM) and matrix metalloproteinase (MMPs) along with nuclear components such as, histone HIST1H1T (H1.6). Conserved signalling factors and expression patterns previously described during mammalian ovarian folliculogenesis were observed. Species-specific features during domestic cat ovarian folliculogenesis were also found. The signalling pathway terms “PI3K-Akt”, “transforming growth factor-β receptor”, “ErbB”, and “HIF-1” from the functional annotation analysis were studied. Some results highlighted mechanistic cues potentially involved in PrF development in the domestic cat. Overall, this study provides an insight into regulatory factors and pathways during preantral ovarian folliculogenesis in domestic cat.


2021 ◽  
Author(s):  
Shuo Chen ◽  
Yuzhou Chang ◽  
Liangping Li ◽  
Diana Acosta ◽  
Cody Morrison ◽  
...  

Alzheimer's disease (AD) is pathologically characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles (tau aggregates), and alterations in microglia, astrocytes and oligodendrocytes. The mesial temporal lobe is a vulnerable brain region in early AD; however, little is known about the transcriptome-scale gene expression in this region and its relation to AD pathology. Here we use the 10x Genomics Visium platform in combination with co-immunofluorescence staining of AD-associated pathological markers to define the spatial topography of gene expression in the middle temporal gyrus (MTG) from both early AD and age- and gender-matched control cases. We identify unique marker genes for six cortical layers and the adjacent white matter as well as gene expression patterns and alterations that showcase unique gene signatures and pathways associated with a range of AD pathology. Also, gene co-expression analyses of differentially expressed genes (DEGs) between AD and controls reveal four unique gene modules, which significantly change their co-expression patterns in the presence of variations of AD pathology. Furthermore, we validate the changes of key representative DEGs that are associated with AD pathology in neurons, microglia, astrocytes and oligodendrocytes using single-molecule fluorescent in situ hybridization. In summary, we provide a rich resource for the spatial transcriptomic profile of the human MTG, which will contribute to our understanding of the complex architecture and AD pathology of this vulnerable brain region.


2020 ◽  
Author(s):  
Hiroto Yamamoto ◽  
Yutaro Uchida ◽  
Tomoki Chiba ◽  
Ryota Kurimoto ◽  
Takahide Matsushima ◽  
...  

AbstractBackgroundsSevoflurane is a most frequently used volatile anaesthetics, but its molecular mechanisms of action remain unclear. We hypothesized that specific genes play regulatory roles in whole brain exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation and identify potential regulatory genes by RNA-seq analysis.MethodsEight-week old mice were exposed to sevoflurane. RNA from four medial prefrontal cortex, striatum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed genes were extracted. Their gene ontology terms and the transcriptome array data of the cerebral cortex of sleeping mice were analysed using Metascape, and the gene expression patterns were compared. Finally, the activities of transcription factors were evaluated using a weighted parametric gene set analysis (wPGSA). JASPAR was used to confirm the existence of binding motifs in the upstream sequences of the differently expressed genes.ResultsThe gene ontology term enrichment analysis result suggests that sevoflurane inhalation upregulated angiogenesis and downregulated neural differentiation in the whole brain. The comparison with the brains of sleeping mice showed that the gene expression changes were specific to anaesthetized mice. Sevoflurane induced Klf4 upregulation in the whole brain. The transcriptional analysis result suggests that KLF4 is a potential transcriptional regulator of angiogenesis and neural development.ConclusionsKlf4 was upregulated by sevoflurane inhalation in whole brain. KLF4 might promote angiogenesis and cause the appearance of undifferentiated neural cells by transcriptional regulation. The roles of KLF4 might be key to elucidating the mechanisms of sevoflurane induced functional modification in the brain.


2021 ◽  
Author(s):  
Kangning Dong ◽  
Shihua Zhang

Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining spatial context of tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to use their spatial information carefully. To this end, we developed a graph attention auto- encoder framework STGATE to accurately identify spatial domains by learning low-dimensional latent embeddings via integrating spatial information and gene expression profiles. To better characterize the spatial similarity at the boundary of spatial domains, STGATE adopts an attention mechanism to adaptively learn the similarity of neighboring spots, and an optional cell type-aware module through integrating the pre-clustering of gene expressions. We validated STGATE on diverse spatial transcriptomics datasets generated by different platforms with different spatial resolutions. STGATE could substantially improve the identification accuracy of spatial domains, and denoise the data while preserving spatial expression patterns. Importantly, STGATE could be extended to multiple consecutive sections for reducing batch effects between sections and extracting 3D expression domains from the reconstructed 3D tissue effectively.


2019 ◽  
Vol 2 (4) ◽  
pp. e00113 ◽  
Author(s):  
P.A. Bobrovsky ◽  
A.K. Larin ◽  
N.F. Polina ◽  
V.N. Lazarev

Human peptidoglycan recognition proteins (PGLYRPs) are the components of innate immunity that exhibit antibacterial activity. In this study a cell line secreting recombinant PGLYRP1 into a culture medium was obtained. Transcriptional profiling of cell lines expressing PGLYRP1 was performed at different stages of C. trachomatis infection. Differential gene expression was studied using the whole transcriptome profiling method on the HumanHT-12 v4 Expression BeadChip microchip using the Illumina Direct Hybridization Whole-Gene Expression Assay protocol. Sample clustering followed by bioinformatics analysis revealed about 100 differentially expressed genes in response to infection with C. trachomatis. PGLYRP1- expressing cells infected with C. trachomatis had a similar transcriptional profile as non-infected cells.


2019 ◽  
Author(s):  
David F. Read ◽  
Edmond Atindaana ◽  
Kalyani Pyaram ◽  
Feng Yang ◽  
Sarah Emery ◽  
...  

AbstractHIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication. Initial findings in immortalized cells were validated using CD4+ cells from donor blood. Tracking clonal behavior by proviral “zip codes” indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in thenefopen reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP-cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in genes’ sense orientation were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP-population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics.SummaryVery few HIV-1 infected cells persist in patients for more than a couple days, but those that do pose life-long health risks. Strategies designed to eliminate these cells have been based on assumptions about what viral properties allow infected cell survival. However, such approaches for HIV-1 eradication have not yet shown therapeutic promise, possibly because much of the research underlying assumptions about virus persistence has been focused on a limited number of infected cell types, the averaged behavior of cells in diverse populations, or snapshot views. Here, we developed a high-throughput approach to study hundreds of distinct HIV-1 infected cells and their progeny over time in an unbiased way. This revealed that each virus established its own pattern of gene expression that, upon infected cell division, was stably transmitted to all progeny cells. Expression patterns consisted of alternating waves of activity and inactivity, with the extent of activity differing among infected cell families over a 1000-fold range. The dynamics and variability among infected cells and within complex populations that the work here revealed has not previously been evident, and may help establish more accurate correlates of persistent HIV-1 infection.


2013 ◽  
Vol 24 (3) ◽  
pp. 246-260 ◽  
Author(s):  
Patricia L. Carlisle ◽  
David Kadosh

Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Tomasz Krzywkowski ◽  
Sibel Ciftci ◽  
Farzaneh Assadian ◽  
Mats Nilsson ◽  
Tanel Punga

ABSTRACT An efficient adenovirus infection results in high-level accumulation of viral DNA and mRNAs in the infected cell population. However, the average viral DNA and mRNA content in a heterogeneous cell population does not necessarily reflect the same abundance in individual cells. Here, we describe a novel padlock probe-based rolling-circle amplification technique that enables simultaneous detection and analysis of human adenovirus type 5 (HAdV-5) genomic DNA and virus-encoded mRNAs in individual infected cells. We demonstrate that the method is applicable for detection and quantification of HAdV-5 DNA and mRNAs in short-term infections in human epithelial cells and in long-term infections in human B lymphocytes. Single-cell evaluation of these infections revealed high heterogeneity and unique cell subpopulations defined by differential viral DNA content and mRNA expression. Further, our single-cell analysis shows that the specific expression pattern of viral E1A 13S and 12S mRNA splice variants is linked to HAdV-5 DNA content in the individual cells. Furthermore, we show that expression of a mature form of the HAdV-5 histone-like protein VII affects virus genome detection in HAdV-5-infected cells. Collectively, padlock probes combined with rolling-circle amplification should be a welcome addition to the method repertoire for the characterization of the molecular details of the HAdV life cycle in individual infected cells. IMPORTANCE Human adenoviruses (HAdVs) have been extensively used as model systems to study various aspects of eukaryotic gene expression and genome organization. The vast majority of the HAdV studies are based on standard experimental procedures carried out using heterogeneous cell populations, where data averaging often masks biological differences. As every cell is unique, characteristics and efficiency of an HAdV infection can vary from cell to cell. Therefore, the analysis of HAdV gene expression and genome organization would benefit from a method that permits analysis of individual infected cells in the heterogeneous cell population. Here, we show that the padlock probe-based rolling-circle amplification method can be used to study concurrent viral DNA accumulation and mRNA expression patterns in individual HAdV-5-infected cells. Hence, this versatile method can be applied to detect the extent of infection and virus gene expression changes in different HAdV-5 infections.


2008 ◽  
Vol 74 (24) ◽  
pp. 7709-7714 ◽  
Author(s):  
Zhen Shi ◽  
Hans P. Blaschek

ABSTRACT Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The microarray was constructed using a collection of genes which are orthologs of members of gene families previously found to be important to the physiology of C. acetobutylicum ATCC 824. Similar to the onset of solventogenesis in C. acetobutylicum 824, the onset of solventogenesis in C. beijerinckii 8052 was concurrent with the initiation of sporulation. However, forespores and endospores developed more rapidly in C. beijerinckii 8052 than in C. acetobutylicum 824, consistent with the accelerated expression of the sigE- and sigG-regulated genes in C. beijerinckii 8052. The comparison of gene expression patterns and morphological changes in C. beijerinckii 8052 and the hyper-butanol-producing C. beijerinckii strain BA101 indicated that BA101 was less efficient in sporulation and phosphotransferase system-mediated sugar transport than 8052 but that it exhibited elevated expression of several primary metabolic genes and chemotaxis/motility genes.


Sign in / Sign up

Export Citation Format

Share Document