scholarly journals A widespread family of WYL-domain transcriptional regulators co-localises with diverse phage defence systems and islands

2021 ◽  
Author(s):  
David M Picton ◽  
Joshua D Harling-Lee ◽  
Samuel J Duffner ◽  
Sam C Went ◽  
Richard D Morgan ◽  
...  

Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterise a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localised with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.

2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Guangjin Liu ◽  
Tingting Gao ◽  
Xiaojun Zhong ◽  
Jiale Ma ◽  
Yumin Zhang ◽  
...  

ABSTRACT Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP. Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.


2008 ◽  
Vol 190 (22) ◽  
pp. 7441-7452 ◽  
Author(s):  
Francisca A. Cerda-Maira ◽  
Carol S. Ringelberg ◽  
Ronald K. Taylor

ABSTRACT Enteric pathogens have developed several resistance mechanisms to survive the antimicrobial action of bile. We investigated the transcriptional profile of Vibrio cholerae O1 El Tor strain C6706 under virulence gene-inducing conditions in the presence and absence of bile. Microarray analysis revealed that the expression of 119 genes was affected by bile. The mRNA levels of genes encoding proteins involved in transport were increased in the presence of bile, whereas the mRNA levels of genes encoding proteins involved in pathogenesis and chemotaxis were decreased. This study identified genes encoding transcriptional regulators from the TetR family (vexR and breR) and multidrug efflux pumps from the resistance-nodulation-cell division superfamily (vexB and vexD [herein renamed breB]) that were induced in response to bile. Further analysis regarding vexAB and breAB expression in the presence of various antimicrobial compounds established that vexAB was induced in the presence of bile, sodium dodecyl sulfate, or novobiocin and that the induction of breAB was specific to bile. BreR is a direct repressor of the breAB promoter and is able to regulate its own expression, as demonstrated by transcriptional and electrophoretic mobility shift assays (EMSA). The expression of breR and breAB is induced in the presence of the bile salts cholate, deoxycholate, and chenodeoxycholate, and EMSA showed that deoxycholate is able to abolish the formation of BreR-P breR complexes. We propose that deoxycholate is able to interact with BreR and induce a conformational change that interferes with the DNA binding ability of BreR, resulting in breAB and breR expression. These results provide new insight into a transcriptional regulator and a transport system that likely play essential roles in the ability of V. cholerae to resist the action of bile in the host.


2014 ◽  
Vol 81 (1) ◽  
pp. 220-230 ◽  
Author(s):  
Wen-Mao Zhang ◽  
Jun-Jie Zhang ◽  
Xuan Jiang ◽  
Hongjun Chao ◽  
Ning-Yi Zhou

ABSTRACTPseudomonassp. strain WBC-3 utilizespara-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons:pnpA,pnpB, andpnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding genepnpRwas found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in allpnpA,pnpB,pnpC, andpnpRpromoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately −55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation ofpnpA,pnpB, andpnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter ofpnpCDEFGand not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of thepnpAandpnpBpromoters were observed after the addition of the inducer PNP in DNase I footprinting.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2664-2664
Author(s):  
Pauline Lee ◽  
Truksa Jaroslav ◽  
Hongfan Peng ◽  
Ernest Beutler

Abstract Transcriptional regulation by iron in mammalian systems is poorly understood. Hepcidin, a 25 amino acid peptide that plays a central role in iron homeostasis, is transcriptionally regulated by iron. A region of the murine hepcidin promoter 1.6 to 1.8 kb upstream from the start of translation was recently identified to be important in transcriptional regulation by iron (Truksa J, et al. The distal location of the iron responsive region of the hepcidin promoter. Blood DOI 10.1182/blood-2007-05-091108, 2007). In order to identify transcription factors that might be important in regulation by iron, transcription factor microarray analyses (Panomics TranSignal Protein/DNA Array) were performed with nuclear extracts from livers of mice made iron deficient or iron loaded for 4 weeks. The analyses revealed 43 transcription factors that were upregulated in iron loaded liver nuclear extracts and 39 transcription factors that were upregulated in iron deficient nuclear extracts. In the region of the promoter we had found essential for transcriptional regulation by iron, −1.6 to −1.8 kb, consensus motifs were identified by Genomatix MatInspector for 10 transcription factors that corresponded to transcription factors upregulated in high iron nuclear extracts by array analyses. Similarly, the consensus sequences for 5 transcription factors corresponded to transcription factors identified in iron deficient nuclear extracts. Electrophoretic mobility shift assays were performed with probes across this region of the murine hepcidin promoter. Several probes exhibited differential binding between deficient and high iron nuclear extracts. These include the probe encompassing the CCAAT box and MEL1 motif, a probe containing a HLH motif, and a probe containing a bZIP and COUP motif. The probe containing the CCAAT motif was supershifted with antibodies against CBF, but was not supershifted with antibodies against SMAD4, CEBPα, and COUP. The probe containing a bZIP and COUP motif can be supershifted with antibodies against COUP-Tf and HNF4α, but not with antibodies against SMAD4, CEBPα, and COUP. Our data suggest that CBFA, COUP, and HNF4α are involved in transcriptional regulation of hepcidin by iron.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3837-3837
Author(s):  
Pauline Lee ◽  
Jaroslav Truksa ◽  
Ernest Beutler

Abstract There are two regions of the murine Hamp1 promoter that have been shown to be critical for Hamp1 expression. The 260 bp proximal region and the distal −1.6 to −1.8 Kb regions appear to be required for responsiveness to IL-6, BMPs and iron. Analyses of 160 bp proximal promoter for consensus transcription factor motifs by MatInspector identified a STAT5 site at the location identified previously by Wrighting et al., Blood 2006, as a functional STAT3 site and by Courselaud et al., J Biol Chem 2002, as a C/EBPα site. Although a SMAD responsive site was not predicted in this region, we (in press), and Verga-Falzacappa et al., J Mol Med 2008, have demonstrated that there is a functional BMP responsive element (GGCGCC) in this region. A probe encompassing the putative BMP-RE1, STAT, C/EBPα, and AP1 motifs were used in electrophoretic mobility shift assays (EMSA). We found that the addition of cold competitor DNA corresponding to STAT3, C/EBPα and AP1 consensus motifs did not block the binding of transcription factors from liver nuclear extracts to the BMP-RE1/STAT/C/EBPα/AP1 probe. In contrast, the addition of cold competitor DNA corresponding the SMAD3/4 or STAT5 completely blocked essentially all binding of liver nuclear transcription factors to the BMP-RE1/STAT/C/EBPα/AP1 probe. Analyses of the −161 to −260 bp proximal promoter for consensus transcription factor motifs identified a GATA2 binding site and a SMAD responsive site (TGTCTGCCC). Two long probes encompassing the to −161 to −260 bp region were used in EMSAs. Binding of liver nuclear extracts to a probe encompassing the GATA motif was blocked by the addition of a GATA consensus DNA. Similarly, binding to a long probe encompassing the SMAD responsive site was blocked by the addition of a SMAD3/4 consensus DNA. Analyses of the 1.6 to 1.7 Kb region of the distal murine Hamp1 promoter identified several transcription factor motifs: bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins, COUP-Tf/HNF4α, and MEL1 (MDS1/EVI1-like gene1) to be both in human and mouse Hamp genes. Although a SMAD responsive site was not identified in this region, we have demonstrated that there is a functional BMP responsive element (GGCGCC) in this region. Using EMSA with probes corresponding to the −1.6 to −1.7 bp region of the hepcidin promoter, we examined the binding of transcription factors from liver nuclear extracts derived from mice. Binding of liver nuclear extract to a probe corresponding to the BMP-RE2, bZIP, HNF4α, COUP motifs was blocked by cold competitor probes corresponding to SMAD3/4, HNF4α, COUP-Tf, and Stat5. Whereas competitor probes to Smad3/4 and HNF4α competed for the binding of specific bands to the radiolabelled probe, total binding was blocked with cold competitor probes to the consensus COUP-Tf and Stat5 motifs. Supershift analyses using antibodies to HNF4α, COUP, SMAD4 demonstrated the binding of these transcription factors to the radiolabeled BMP-RE2/bZIP/HNF4α/COUP probe. Binding to a probe encompassing a MEL motif was blocked by the addition of cold competitor to C/EBPα and could be supershifted with antibodies against C/EBPα. In conclusion, SMAD 3/4, COUP-Tf, HNF4α, C/EBPα, GATA2 and STAT5 appear to be important in the regulation of Hamp1 expression.


2005 ◽  
Vol 73 (3) ◽  
pp. 1684-1694 ◽  
Author(s):  
Maria-José Ferrándiz ◽  
Keith Bishop ◽  
Paul Williams ◽  
Helen Withers

ABSTRACT In enteropathogenic and enterohemorraghic Escherichia coli (EPEC and EHEC), two members of the SlyA family of transcriptional regulators have been identified as SlyA. Western blot analysis of the wild type and the corresponding hosA and slyA deletion mutants indicated that SlyA and HosA are distinct proteins whose expression is not interdependent. Of 27 different E. coli strains (EPEC, EHEC, enteroinvasive, enteroaggregative, uropathogenic, and commensal) examined, 14 were positive for both genes and proteins. To investigate hosA expression, a hosA::luxCDABE reporter gene fusion was constructed. hosA expression was significantly reduced in the hosA but not the slyA mutant and was influenced by temperature, salt, and pH. In contrast to SlyA, HosA did not activate the cryptic E. coli K-12 hemolysin ClyA. Mutation of hosA did not influence type III secretion, the regulation of the LEE1 and LEE4 operons, or the ability of E2348/69 to form attaching-and-effacing lesions on intestinal epithelial cells. HosA is, however, involved in the temperature-dependent positive control of motility on swim plates and regulates fliC expression and FliC protein levels. In electrophoretic mobility shift assays, purified HosA protein bound specifically to the fliC promoter, indicating that HosA directly modulates flagellin expression. While direct examination of flagellar structure and the motile behavior of individual hosA cells grown in broth culture at 30°C did not reveal any obvious differences, hosA mutants, unlike the wild type, clumped together, forming nonmotile aggregates which could account for the markedly reduced motility of the hosA mutant on swim plates at 30°C. We conclude that SlyA and HosA are independent transcriptional regulators that respond to different physicochemical cues to facilitate the environmental adaptation of E. coli.


2020 ◽  
Vol 203 (1) ◽  
Author(s):  
Xiaojing Fan ◽  
Zhiwen Zhao ◽  
Tingyan Sun ◽  
Wei Rou ◽  
Caiying Gui ◽  
...  

ABSTRACT The invasion and colonization of host plants by the destructive pathogen Ralstonia solanacearum rely on its cell motility, which is controlled by multiple factors. Here, we report that the LysR-type transcriptional regulator CrgA (RS_RS16695) represses cell motility in R. solanacearum GMI1000. CrgA possesses common features of a LysR-type transcriptional regulator and contains an N-terminal helix-turn-helix motif as well as a C-terminal LysR substrate-binding domain. Deletion of crgA results in an enhanced swim ring and increased transcription of flhDC. In addition, the ΔcrgA mutant possesses more polar flagella than wild-type GMI1000 and exhibits higher expression of the flagellin gene fliC. Despite these alterations, the ΔcrgA mutant did not have a detectable growth defect in culture. Yeast one-hybrid and electrophoretic mobility shift assays revealed that CrgA interacts directly with the flhDC promoter. Expressing the β-glucuronidase (GUS) reporter under the control of the crgA promoter showed that crgA transcription is dependent on cell density. Soil-soaking inoculation with the crgA mutant caused wilt symptoms on tomato (Solanum lycopersicum L. cv. Hong yangli) plants earlier than inoculation with the wild-type GMI1000 but resulted in lower disease severity. We conclude that the R. solanacearum regulator CrgA represses flhDC expression and consequently affects the expression of fliC to modulate cell motility, thereby conditioning disease development in host plants. IMPORTANCE Ralstonia solanacearum is a widely distributed soilborne plant pathogen that causes bacterial wilt disease on diverse plant species. Motility is a critical virulence attribute of R. solanacearum because it allows this pathogen to efficiently invade and colonize host plants. In R. solanacearum, motility-defective strains are markedly affected in pathogenicity, which is coregulated with multiple virulence factors. In this study, we identified a new LysR-type transcriptional regulator (LTTR), CrgA, that negatively regulates motility. The mutation of the corresponding gene leads to the precocious appearance of wilt symptoms on tomato plants when the pathogen is introduced using soil-soaking inoculation. This study indicates that the regulation of R. solanacearum motility is more complex than previously thought and enhances our understanding of flagellum regulation in R. solanacearum.


Microbiology ◽  
2014 ◽  
Vol 160 (3) ◽  
pp. 623-634 ◽  
Author(s):  
Tetsu Shimizu ◽  
Akira Nakamura

Five genes encoding enzymes required for l-gluconate catabolism, together with genes encoding components of putative ABC transporters, are located in a cluster in the genome of Paracoccus sp. 43P. A gene encoding a transcriptional regulator in the IclR family, lgnR, is located in front of the cluster in the opposite direction. Reverse transcription PCR analysis indicated that the cluster was transcribed as an operon, termed the lgn operon. Two promoters, P lgnA and P lgnR , are divergently located in the intergenic region, and transcription from these promoters was induced by addition of l-gluconate or d-idonate, a catabolite of l-gluconate. Deletion of lgnR resulted in constitutive expression of lgnA, lgnH and lgnR, indicating that lgnR encodes a repressor protein for the expression of the lgn operon and lgnR itself. Electrophoretic mobility shift assay and DNase I footprinting analyses revealed that recombinant LgnR binds to both P lgnA and P lgnR , indicating that LgnR represses transcription from these promoters by competing with RNA polymerase for binding to these sequences. d-Idonate was identified as a candidate effector molecule for dissociation of LgnR from these promoters. Phylogenetic analysis revealed that LgnR formed a cluster with putative proteins from other genome sequences, which is distinct from those proteins of known regulatory functions, in the IclR family of transcriptional regulators. Additionally, the phylogeny suggests an evolutionary linkage between the l-gluconate catabolic pathway and d-galactonate catabolic pathways distributed in Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Actinobacteria.


2002 ◽  
Vol 22 (6) ◽  
pp. 1936-1946 ◽  
Author(s):  
Annabel Tuckfield ◽  
David R. Clouston ◽  
Tomasz M. Wilanowski ◽  
Lin-Lin Zhao ◽  
John M. Cunningham ◽  
...  

ABSTRACT The Polycomb group (PcG) of proteins represses homeotic gene expression through the assembly of multiprotein complexes on key regulatory elements. The mechanisms mediating complex assembly have remained enigmatic since most PcG proteins fail to bind DNA. We now demonstrate that the human PcG protein dinG interacts with CP2, a mammalian member of the grainyhead-like family of transcription factors, in vitro and in vivo. The functional consequence of this interaction is repression of CP2-dependent transcription. The CP2-dinG interaction is conserved in evolution with the Drosophila factor grainyhead binding to dring, the fly homologue of dinG. Electrophoretic mobility shift assays demonstrate that the grh-dring complex forms on regulatory elements of genes whose expression is repressed by grh but not on elements where grh plays an activator role. These observations reveal a novel mechanism by which PcG proteins may be anchored to specific regulatory elements in developmental genes.


2007 ◽  
Vol 189 (12) ◽  
pp. 4367-4374 ◽  
Author(s):  
Luen-Luen Li ◽  
Jane E. Malone ◽  
Barbara H. Iglewski

ABSTRACT Bacteria communicate with each other to regulate cell density-dependent gene expression via a quorum-sensing (QS) cascade. In Pseudomonas aeruginosa, two known QS systems, las and rhl, control the expression of many factors that relate to virulence, pathogenicity, and biofilm development. Microarray studies of the las and rhl regulons led to our hypothesis that a complicated hierarchy in the QS regulon is composed of multiple transcriptional regulators. Here, we examined a QS-regulated gene, vqsR, which encodes a probable transcriptional regulator with a putative 20-bp operator sequence (las box) upstream. The transcriptional start site for vqsR was determined. The vqsR promoter was identified by examining a series of vqsR promoter-lacZ fusions. In addition, an Escherichia coli system where either LasR or RhlR protein was expressed from a plasmid indicated that the las system was the dominant regulator for vqsR. Electrophoretic mobility shift assays (EMSA) demonstrate that purified LasR protein binds directly to the vqsR promoter in the presence of 3O-C12-HSL. Point mutational analysis of the vqsR las box suggests that positions 3 and 18 in the las box are important for vqsR transcription, as assayed with a series of vqsRp-lacZ fusions. EMSA also shows that positions 3 and 18 are important for binding between the vqsR promoter and LasR. Our results demonstrate that the las system directly regulates vqsR, and certain nucleotides in the las box are crucial for LasR binding and activation of the vqsR promoter.


Sign in / Sign up

Export Citation Format

Share Document