scholarly journals Comparative proteomic analysis of Fusarium oxysporum f. sp. cubense strains (Foc R1 and Foc TR4) provides better insights into mechanisms of their virulence, habitat adaptation and pathogenesis

2021 ◽  
Author(s):  
Thangavelu Raman ◽  
Kalaiponmani Kalaimughilan ◽  
Edwinraj Esack

Fusarium oxysporum f. sp. cubense (Foc), a devastative soil-borne fungal pathogen causing vascular wilt (i.e. Panama disease) which leads to severe crop losses in most of the banana-growing regions of the world. As there is no single source of effective management practices available so far, understand the pathogenicity of the organism may help in designing effective control measures through molecular approaches. The study aims to compare the proteome of the two pathogenic Foc virulent strains, Race 1 (Foc R1) and tropical race 4 (Foc TR4) that are capable of infecting the Cavendish group of bananas using 2-dimensional (2-D) gel electrophoresis, MALDI-TOF/MS and MS/MS analysis. The results of the study revealed that the proteins, peroxiredoxins, NAD-aldehyde dehydrogenase (NAD-ALDH), MAPK protein, pH-response regulator protein palA/rim-20 and isotrichodermin C15 hydroxylase have shared homology with the fungal proteins, which regulate the osmotic stress response, signal transduction, root colonization and toxin biosynthesis. These are the important functions for the pathogen survival in an unfavourable environment, and successful establishment and infection of the banana host. The present study also identified several putative pathogenicity related proteins in both Foc R1 and Foc TR4. Specifically, certain Foc TR4 specific putative pathogenicity related proteins, phytotoxins biosynthesis gene, fructose 1,6-bisphosphate aldolase class II, Synembryn-like proteins found to contribute strong virulence. Overexpression or knockout of the elective genes could help in devising better control measures for the devastative pathogens in the future. To the best of our knowledge, this is the first report on the proteomics of Foc R1 and Foc TR4 strains of Indian origin that infect Cavendish bananas.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer O. Han ◽  
Nicholas L. Naeger ◽  
Brandon K. Hopkins ◽  
David Sumerlin ◽  
Paul E. Stamets ◽  
...  

AbstractEntomopathogenic fungi show great promise as pesticides in terms of their relatively high target specificity, low non-target toxicity, and low residual effects in agricultural fields and the environment. However, they also frequently have characteristics that limit their use, especially concerning tolerances to temperature, ultraviolet radiation, or other abiotic factors. The devastating ectoparasite of honey bees, Varroa destructor, is susceptible to entomopathogenic fungi, but the relatively warm temperatures inside honey bee hives have prevented these fungi from becoming effective control measures. Using a combination of traditional selection and directed evolution techniques developed for this system, new strains of Metarhizium brunneum were created that survived, germinated, and grew better at bee hive temperatures (35 °C). Field tests with full-sized honey bee colonies confirmed that the new strain JH1078 is more virulent against Varroa mites and controls the pest comparable to current treatments. These results indicate that entomopathogenic fungi are evolutionarily labile and capable of playing a larger role in modern pest management practices.


2005 ◽  
Vol 26 ◽  
pp. 127-133 ◽  
Author(s):  
AK Shrestha

A survey was conducted to appraise the guava farming in Nepal with respect to the orchard management practices, cultivar status and major production constraints during July- December 2001. Guava plantation was extensively distributed throughout terai, inner terai and mid hill districts ranging in altitude from 115 masl to 1600 masl. Indian varieties dominated the guava plantation in Nepal although mix population of both improved and local cultivars was reported in majority of orchards. Preponderance of seedling origin guava plantation was noticed. The management practices were poor. Over 80% of the orchards received neither FYM nor chemical fertilizer. Similarly, more than 90% of the orchards were under rainfed condition. The peak period of flowering was reported during April/May followed by Feb/March that may extend up to June/July. As a consequence, the fruit availability period is mainly restricted to four months, i.e. July/ August to Oct/Nov. Most of the growers pointed out guava wilt as the main biotic constraint in guava production. The outcomes indicted the urgent need to adopt the effective control measures against the guava wilt malady to flourish guava enterprise in Nepal. Furthermore, off-season production of guava fruit has the great potential in Nepalese market. Key words: cultivar, guava wilt, orchard, Psidium guajava J. Inst. Agric. Anim. Sci. 26:127-133 (2005)


2021 ◽  
Vol 19 (3) ◽  
pp. 150-173
Author(s):  
N. Lawal ◽  
M.B. Bello

Despite six decades of concerted efforts, Infectious bursal disease (IBD) still remains a major threat to the poultry industry worldwide. Most importantly, the emergence of variant and very virulent strains of infectious bursal disease virus (IBDV) has dramatically changed the epidemiology of the disease, thus resulting in the renewed efforts in the search for effective control measures. Currently, live attenuated, inactivated, and immune-complex vaccines are among the immune-therapeutic approaches employed for the control of IBD in the field alongside adequate biosecurity, albeit with various degrees of success and limitations. Progress in genetic engineering has allowed the generation of reverse genetic IBDV mutants, recombinant live viral vectors expressing the IBDV VP2 immunodominant protein, intra-serotypic recombinant IBDV viral-like particle co-expressing the outer capsid protein structures derived from 2 or more serotype 1 strains or the incorporation of either VP2 or VP2-4-3 polyprotein sequences alongside molecular adjuvants that can be used as IBD vaccine candidates to elicit an immune response. However, despite these advances, outbreaks are still reported even in flocks that have up to date vaccination records and somewhat excellent management practices. This paper reviews aspect of genetic characteristics of IBDV and reflects on the progress and future challenges in providing effective IBD vaccine to achieve effective control of both classical and very-virulent IBDV serotypes that constitute a major devastation to poultry production and health.


2021 ◽  
Vol 21 (103) ◽  
pp. 18414-18434
Author(s):  
Abigael Obura Awuor ◽  
◽  
SD Okoth ◽  
FM Thuita

Aflatoxins are an important food safety challenge globally and in Kenya. Understanding a community’s knowledge, perception and practices is instrumental to improvement of aflatoxin control measures. Creating awareness on the causes of contamination and mitigation options could improve aflatoxin mitigation. This study aimed to map out dietary staples, establish drivers of food choices, describe knowledge and perceptions on aflatoxin and post-harvest grain management practices and use among the communities in Busia County in order to guide future evidence-based aflatoxin prevention and public health interventions. A household survey was conducted in 40 villages, and participants were selected using stratified systematic sampling in three sub-counties in rural Busia County. The survey was complemented and triangulated with a qualitative study component. Focus Group Discussions with sixty women and sixteen semi- structured interviews with nine men and seven women were conducted. Both descriptive and statistical analysis of data were performed. The results showed variability in household diversity scores and maize was observed as the community staple. While both younger and older participants were able to identify spoilt grains, they demonstrated limited knowledge and awareness of aflatoxin. Participants were not aware that seemingly clean grains could be colonized by aflatoxin as they only associated spoilage with discoloration and bitter taste of flour. Study participants were also not aware of the aflatoxin pathways to exposure as they used the spoilt grains in feeding chicken, making animal feed and local brew. Appropriate disposal methods of aflatoxin contaminated food were not known. The knowledge gap was attributed to lack of awareness creation and sensitization by the relevant government ministries. For effective control and prevention of aflatoxin contamination, farmers and traders need to be aware of the causes of aflatoxin contamination of grains, available mitigation options and health risks attributable to aflatoxin exposure in order to self-regulate. Ministries of health and agriculture, through their public health officers, community health workers and agricultural extension officers respectively need to collaborate and spearhead awareness creation among communities and institute food surveillance systems in Busia County.


Plant Disease ◽  
1999 ◽  
Vol 83 (11) ◽  
pp. 1073-1073 ◽  
Author(s):  
G. Magnano di San Lio ◽  
S. O. Cacciola ◽  
A. Pane

Muskmelon (Cucumis melo L.) is very important economically to agriculture in Italy. The Sicily area accounts for ≈40% of the total muskmelon production. Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hans. is the most prevalent and damaging disease of muskmelon in Sicily. Use of cultivars with major resistance genes, Fom 1 and Fom 2, is the most effective control measure for combating the disease. During March 1999, severe infections of Fusarium wilt were noted in a commercial muskmelon crop, cv. Firmo F1, grown in plastic tunnels in Syracuse Province (eastern Sicily). The muskmelon seedlings had been transplanted into the tunnels during January 20 days after soil fumigation with methyl bromide. Firmo F1 possesses both Fom 1 and Fom 2 genes. Of 18,000 Firmo F1 plants, ≈6,500 showed symptoms consisting of stunting, vein clearing; leaf yellowing, wilting, and dying; brown necrotic streak; and gummy exudates on the basal portion of vines. A pinkish white mold developed on dead tissues when infected plants were kept at high relative humidity. The pathogenicity of both a single-conidium isolate of F. oxysporum f. sp. melonis from a symptomatic Firmo F1 plant and two isolates of races 0 and 1, recovered previously from other cultivars in Sicily and used as references, was tested with three differential muskmelon cultivars, Charentais T, Doublon, and CM 17187 (1), as well as three commercial cultivars, Ramon, Cassella, and Geamar (possessing Fom 1, Fom 2, and both Fom 1 and Fom 2 resistance genes, respectively). Muskmelon seedlings were inoculated by the root-dip method (3), using a suspension of 5 × 105 conidia per ml. Inoculated seedlings were transplanted to plastic pots filled with sterilized soil and placed in a greenhouse (25 to 30°C). Symptoms were scored 7 to 10 days after inoculation. The isolate from Firmo F1 was pathogenic to all cultivars tested, the race 0 isolate was pathogenic only to cv. Charentais T, and the race 1 isolate was pathogenic only to cvs. Charentais T, Doublon, and Ramon. F. oxysporum was reisolated from symptomatic plants. Based on its pathogenicity and symptomology, the isolate from Firmo F1 was classified as race 1,2y (yellows), according to the nomenclature proposed by Risser et al. (1). Race 1,2 poses a serious threat to muskmelon production in Sicily, because all currently used cultivars are susceptible to the race, and other control measures, such as preplant soil fumigation with methyl bromide and solarization, are not as effective as use of resistant cultivars. Further study is needed to establish which is the prevalent race of F. oxysporum f. sp. melonis in Sicily. This report confirms that race 1,2 occurs in all major muskmelon-production areas in Italy (2). References: (1) G. Risser et al. Phytopathology 66:1105, 1976. (2) G. Tamietti et al. Petria 4:103, 1994. (3) F. L. Wellman. Phytopathology 29:945, 1939.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Author(s):  
Federica Alfani ◽  
Aslihan Arslan ◽  
Nancy McCarthy ◽  
Romina Cavatassi ◽  
Nicholas Sitko

Abstract This paper aims at identifying whether and how sustainable land management practices and livelihood diversification strategies have contributed to moderating the impacts of the El Niño-related drought in Zambia. This is done using a specifically designed survey called the El Niño Impact Assessment Survey, which is combined with the Rural Agricultural Livelihoods Surveys, as well as high resolution rainfall data at the ward level over 34 years. This unique panel data set allows us to control for the time-invariant unobserved heterogeneity to understand the impacts of shocks like El Niño, which are expected to become more frequent and severe as a result of climate change. We find that maize yields were substantially reduced and that household incomes were only partially protected from the shock thanks to diversification strategies. Mechanical erosion control measures and livestock diversification emerge as the only strategies that provided yield and income benefits under weather shock.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Kyeongnam Kim ◽  
Yong Ho Lee ◽  
Gayoung Kim ◽  
Byung-Ho Lee ◽  
Jeong-Oh Yang ◽  
...  

Abstract Two spotted spider mite, Tetranychus urticae, is a polyphagous pest to a variety of plants and they are hard to be controlled due to occurrence of resistance to acaricides. In this study, biochemical evaluation after ethyl formate (EF) and phosphine (PH3) fumigation towards T. urticae might help officials to control them in quarantine purposes. PH3 fumigation controlled eggs (LC50; 0.158 mg/L), nymphs (LC50; 0.030 mg/L), and adults (LC50; 0.059 mg/L) of T. urticae, and EF effectively affected nymphs (LC50; 2.826 mg/L) rather than eggs (LC50; 6.797 mg/L) and adults (LC50; 5.836 mg/L). In a longer exposure time of 20 h, PH3 fumigation was 94.2-fold more effective tool for control of T. urticae than EF fumigant. EF and PH3 inhibited cytochrome c oxidase (COX) activity differently in both nymphs and adults of T. urticae. It confirmed COX is one of target sites of these fumigants in T. urticae and COX is involved in the respiratory chain as complex IV. Molecular approaches showed that EF fumigation completely down-regulated the expression of cox11 gene at the concentration of LC10 value, while PH3 up-regulated several genes greater than twofold in T. urticae nymphs treated with the concentration of LC50 value. These increased genes by PH3 fumigation are ndufv1, atpB, para, and ace, responsible for the expression of NADH dehydrogenase [ubiquinone] flavoprotein 1, ATP synthase, and acetylcholinesterase in insects, respectively. Lipidomic analyses exhibited a significant difference between two fumigants-exposed groups and the control, especially an ion with 815.46 m/z was analyzed less than twofold in the fumigants-treated group. It was identified as PI(15:1/18:3) and it may be used as a biomarker to EF and PH3 toxicity. These findings may contribute to set an effective control strategy on T. urticae by methyl bromide alternatives such as EF and PH3 because they have shared target sites on the respiratory chain in the pest.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


Sign in / Sign up

Export Citation Format

Share Document