scholarly journals Genome-wide identification of CDC34 that stabilizes EGFR and promotes lung carcinogenesis

2018 ◽  
Author(s):  
Xin-Chun Zhao ◽  
Gui-Zhen Wang ◽  
Yong-Chun Zhou ◽  
Liang Ma ◽  
Jie Liu ◽  
...  

AbstractTo systematically identify ubiquitin pathway genes that are critical to lung carcinogenesis, we used a genome-wide silencing method in this study to knockdown 696 genes in non-small cell lung cancer (NSCLC) cells. We identified 31 candidates that were required for cell proliferation in two NSCLC lines, among which the E2 ubiquitin conjugase CDC34 represented the most significant one. CDC34 was elevated in tumor tissues in 67 of 102 (65.7%) NSCLCs, and smokers had higher CDC34 than nonsmokers. The expression of CDC34 was inversely associated with overall survival of the patients. Forced expression of CDC34 promoted, whereas knockdown of CDC34 inhibited lung cancerin vitroandin vivo. CDC34 bound EGFR and competed with E3 ligase c-Cbl to inhibit the polyubiquitination and subsequent degradation of EGFR. In EGFR-L858R and EGFR-T790M/Del(exon 19)-driven lung cancer in mice, knockdown of CDC34 by lentivirus mediated transfection of short hairpin RNA significantly inhibited tumor formation. These results demonstrate that an E2 enzyme is capable of competing with E3 ligase to inhibit ubiquitination and subsequent degradation of oncoprotein substrate, and CDC34 represents an attractive therapeutic target for NSCLCs with or without drug-resistant EGFR mutations.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Koudong Zhang ◽  
Hang Hu ◽  
Juan Xu ◽  
Limin Qiu ◽  
Haitao Chen ◽  
...  

Abstract Background Lung cancer (LC) is a malignant tumor originating in the bronchial mucosa or gland of the lung. Circular RNAs (circRNAs) are proved to be key regulators of tumor progression. However, the regulatory effect of circ_0001421 on lung cancer tumorigenesis remains unclear. Methods The expression levels of circ_0001421, microRNA-4677-3p (miR-4677-3p) and cell division cycle associated 3 (CDCA3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), Transwell and Tumor formation assays were performed to explore the role of circ_0001421 in LC. Glucose consumption and lactate production were examined by a Glucose assay kit and a Lactic Acid assay kit. Western blot was utilized to examine the protein levels of Hexokinase 2 (HK2) and CDCA3. The interaction between miR-4677-3p and circ_0001421 or CDCA3 was confirmed by dual-luciferase reporter assay. Results Circ_0001421 was increased in LC tissues and cells, and knockdown of circ_0001421 repressed cell proliferation, migration, invasion and glycolysis in vitro. Meanwhile, circ_0001421 knockdown inhibited LC tumor growth in vivo. Mechanistically, circ_0001421 could bind to miR-4677-3p, and CDCA3 was a target of miR-4677-3p. Rescue assays manifested that silencing miR-4677-3p or CDCA3 overexpression reversed circ_0001421 knockdown-mediated suppression on cell proliferation, migration, invasion and glycolysis in LC cells. Conclusion Circ_0001421 promoted cell proliferation, migration, invasion and glycolysis in LC by regulating the miR-4677-3p/CDCA3 axis, which providing a new mechanism for LC tumor progression.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bisan Abdalfatah Zohud ◽  
Ping Guo ◽  
Batoul Abdalfatah Zohud ◽  
Fengzhou Li ◽  
Jiao J. Hao ◽  
...  

Abstract Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Howard Li ◽  
Mary C. M. Weiser-Evans ◽  
Raphael Nemenoff

Peroxisome proliferator-activated receptor-γ(PPARγ) is a member of the nuclear receptor superfamily of ligand-activated transcription factors that plays an important role in the control of gene expression linked to a variety of physiological processes, including cancer. Ligands for PPARγinclude naturally occurring fatty acids and the thiazolidinedione class of antidiabetic drugs. Activation of PPARγin a variety of cancer cells leads to inhibition of growth, decreased invasiveness, reduced production of proinflammatory cytokines, and promotion of a more differentiated phenotype. However, systemic activation of PPARγhas been reported to be protumorigenic in somein vitrosystems andin vivomodels. Here, we review the available data that implicate PPARγin lung carcinogenesis and highlight the challenges of targeting PPARγin lung cancer treatments.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Jingtao Zhang ◽  
Zihao Xu ◽  
Boyao Yu ◽  
Jiatang Xu ◽  
Bentong Yu

Abstract The tripartite motif (TRIM) family is a family of proteins with highly conserved domains. Previous researches have suggested that the members of TRIM family proteins played a crucial role in cancer development and progression. Our study explored the relationship between TRIM35 and non-small cell lung cancer (NSCLC). The study showed that the expression of TRIM35 was increased in NSCLC samples, and patients with high expression of TRIM35 had a poor clinical prognosis. Overexpression of TRIM35 in NSCLC cell line H460 promoted cell proliferation, migration, and invasion, knockdown of TRIM35 produced an opposite result in A549 and H1299 cell lines. In vivo study further confirmed that overexpression of TRIM35 promoted tumor formation. The RNA-seq analysis suggested that TRIM35 might promote lung cancer proliferation, migration, and invasion by regulating cancer-associated functions and signaling pathways. Hence, we identified TRIM35 played a significant role in tumoral growth and was a potential diagnosis and prognosis target for lung cancer.


Parasitology ◽  
2013 ◽  
Vol 140 (12) ◽  
pp. 1523-1533 ◽  
Author(s):  
J. HODGKINSON ◽  
K. CWIKLINSKI ◽  
N. J. BEESLEY ◽  
S. PATERSON ◽  
D. J. L. WILLIAMS

SUMMARYDespite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Weijie Zhang ◽  
Ruochen Zhang ◽  
Yuanyuan Zeng ◽  
Yue Li ◽  
Yikun Chen ◽  
...  

AbstractLung cancer is recognized as the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) being the predominant subtype, accounting for approximately 85% of lung cancer cases. Although great efforts have been made to treat lung cancer, no proven method has been found thus far. Considering β, β-dimethyl-acryl-alkannin (ALCAP2), a natural small-molecule compound isolated from the root of Lithospermum erythrorhizon. We found that lung adenocarcinoma (LUAD) cell proliferation and metastasis can be significantly inhibited after treatment with ALCAP2 in vitro, as it can induce cell apoptosis and arrest the cell cycle. ALCAP2 also significantly suppressed the volume of tumours in mice without inducing obvious toxicity in vivo. Mechanistically, we revealed that ALCAP2-treated cells can suppress the nuclear translocation of β-catenin by upregulating the E3 ligase NEDD4L, facilitating the binding of ubiquitin to β-catenin and eventually affecting the wnt-triggered transcription of genes such as survivin, cyclin D1, and MMP9. As a result, our findings suggest that targeting the oncogene β-catenin with ALCAP2 can inhibit the proliferation and metastasis of LUAD cells, and therefore, ALCAP2 may be a new drug candidate for use in LUAD therapeutics.


2018 ◽  
Vol 115 (31) ◽  
pp. E7285-E7292 ◽  
Author(s):  
Adelajda Zorba ◽  
Chuong Nguyen ◽  
Yingrong Xu ◽  
Jeremy Starr ◽  
Kris Borzilleri ◽  
...  

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously “undruggable” targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton’s tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK–CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huifeng Hao ◽  
Sheng Hu ◽  
Dawei Bu ◽  
Xiaogang Sun ◽  
Miao Wang

CXCR7 is a non-classical chemokine receptor for CXCL12, whose gene represents a genome-wide association locus for coronary artery disease. Global deletion of CXCR7 increased experimentally induced neointimal formation and atherosclerosis in hyperlipidemic mice, with evidence that CXCR7 modified cholesterol uptake to adipose tissue. We found that CXCR7 was expressed in endothelial cells of mouse neointima and human aortic lesions. To examine a role of endothelial CXCR7 in vascular remodeling, endothelial CXCR7 inducible knockout mice were studied for their vascular response to wire injury in femoral arteries. Tamoxifen treatment of mice harboring floxed CXCR7 and Cdh5 -promoter driven CreERT2 , essentially abolished endothelial CXCR7 expression in vitro and in vivo. Postnatal deletion of endothelial CXCR7 exacerbated neointimal formation on normalipidemic background, four weeks after injury. Mechanistically, this was attributable to attenuated endothelial repair following endothelial injury. Collectively, endothelial CXCR7 is a key regulator of vascular remodeling, independent of lipid traits.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianguo Huang ◽  
Mark Chen ◽  
Eric S. Xu ◽  
Lixia Luo ◽  
Yan Ma ◽  
...  

AbstractCooperating gene mutations are typically required to transform normal cells enabling growth in soft agar or in immunodeficient mice. For example, mutations in Kras and transformation-related protein 53 (Trp53) are known to transform a variety of mesenchymal and epithelial cells in vitro and in vivo. Identifying other genes that can cooperate with oncogenic Kras and substitute for Trp53 mutation has the potential to lead to new insights into mechanisms of carcinogenesis. Here, we applied a genome-wide CRISPR/Cas9 knockout screen in KrasG12D immortalized mouse embryonic fibroblasts (MEFs) to search for genes that when mutated cooperate with oncogenic Kras to induce transformation. We also tested if mutation of the identified candidate genes could cooperate with KrasG12D to generate primary sarcomas in mice. In addition to identifying the well-known tumor suppressor cyclin dependent kinase inhibitor 2A (Cdkn2a), whose alternative reading frame product p19 activates Trp53, we also identified other putative tumor suppressors, such as F-box/WD repeat-containing protein 7 (Fbxw7) and solute carrier family 9 member 3 (Slc9a3). Remarkably, the TCGA database indicates that both FBXW7 and SLC9A3 are commonly co-mutated with KRAS in human cancers. However, we found that only mutation of Trp53 or Cdkn2a, but not Fbxw7 or Slc9a3 can cooperate with KrasG12D to generate primary sarcomas in mice. These results show that mutations in oncogenic Kras and either Fbxw7 or Slc9a3 are sufficient for transformation in vitro, but not for in vivo sarcomagenesis.


2017 ◽  
Vol 313 (5) ◽  
pp. C556-C566 ◽  
Author(s):  
Phattrakorn Powan ◽  
Sudjit Luanpitpong ◽  
Xiaoqing He ◽  
Yon Rojanasakul ◽  
Pithi Chanvorachote

The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers.


Sign in / Sign up

Export Citation Format

Share Document