scholarly journals Lipid perturbation-activated IRE-1 modulates autophagy and lipolysis during endoplasmic reticulum stress

2018 ◽  
Author(s):  
Jhee Hong Koh ◽  
Lei Wang ◽  
Caroline Beaudoin-Chabot ◽  
Guillaume Thibault

ABSTRACTMetabolic disorders such as obesity and nonalcoholic fatty liver disease (NAFLD) are emerging diseases that affect the global population. One facet of these disorders is attributed to the disturbance of membrane lipid composition. Perturbation of endoplasmic reticulum (ER) homeostasis through changes in membrane phospholipid composition results in activation of the unfolded protein response (UPR) and causes dramatic translational and transcriptional changes in the cell. To restore cellular homeostasis, the three highly conserved UPR transducers ATF6, IRE1, and PERK mediate cellular processes upon ER stress. The role of the UPR in proteotoxic stress caused by the accumulation of misfolded proteins is well understood but much less so under lipid perturbation-induced UPR (UPRLP). We found that genetically disrupted phosphatidylcholine synthesis in C. elegans causes, lipid perturbation, lipid droplet accumulation, and induced ER stress, all hallmarks of NAFLD. Transcriptional profiling of UPRLP animals shows a unique subset of genes modulated in an UPR-dependent manner that is unaffected by proteotoxic stress (UPRPT). Among these, we identified autophagy genes bec-1 and lgg-1 and the lipid droplet-associated lipase atgl-1 to be modulated by IRE-1. Considering the important role of lipid homeostasis and how its impairment contributes to the pathology of metabolic diseases, our data uncovers the indispensable role of a fully functional UPR program in regulating lipid homeostasis in the face of chronic ER stress and lipotoxicity.

2020 ◽  
Vol 36 (12) ◽  
pp. 1002-1009
Author(s):  
Ke Gao ◽  
Chengfei Zhang ◽  
Yihong Tian ◽  
Sajid Naeem ◽  
Yingmei Zhang ◽  
...  

It is well-documented that lead (Pb) toxicity can affect almost all systems in living organisms. It can induce selective autophagy of mitochondria (mitophagy) by triggering reactive oxygen species production. Emerging evidence has suggested that Pb-induced autophagy can also be activated by the endoplasmic reticulum (ER) stress pathway. However, the interplay between ER stress and mitophagy remains to be elucidated. In this study, human embryonic kidney HEK293 cells were employed to investigate the role of ER stress in Pb-induced mitophagy. The results showed that the cell viability was decreased and cell damage was induced after exposure to Pb (0, 0.5, 1, 2, and 4 mM) for 24 h in a dose-dependent manner. Moreover, the expression of LC3-Ⅱ was significantly increased, and the expression of HSP60 was dramatically decreased after exposure to 1 mM and 2 mM Pb, indicating the induction of mitophagy following Pb exposure. Meanwhile, the expressions of activating transcription factor 6, inositol-requiring protein-1α, CCAAT/enhancer binding protein homologous protein, and glucose-regulated protein 78 were dramatically increased after Pb treatment, signifying the initiation of ER stress. Notably, the mitophagic effect was significantly compromised when ER stress was inhibited by 0.5 mM 4-phenylbutyrate, which was evidenced by lesser decreases in HSP60 expression and level of LC3-Ⅱ, suggesting Pb-induced mitophagy may be activated by the ER stress. Taken together, these findings provide a better understanding of Pb toxicity and suggest that Pb-induced ER stress may play a regulatory role in the upstream of mitophagy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-shan Wan ◽  
Xiang-hong Lu ◽  
Ye-cheng Xiao ◽  
Yuan Lin ◽  
Hong Zhu ◽  
...  

Fibroblast growth factor 21 (FGF21) is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER) stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD). In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4) and CCAAT enhancer binding protein homologous protein (CHOP). Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP−/− mouse primary hepatocytes (MPH), and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.


2020 ◽  
Vol 21 (21) ◽  
pp. 8208
Author(s):  
Yi Jin ◽  
Yanjie Tan ◽  
Pengxiang Zhao ◽  
Zhuqing Ren

Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.


2020 ◽  
Vol 21 (17) ◽  
pp. 6146
Author(s):  
Yuka Eura ◽  
Toshiyuki Miyata ◽  
Koichi Kokame

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that induces the degradation of ER terminally misfolded proteins. The ERAD system consists of complexes of multiple ER membrane-associated and luminal proteins that function cooperatively. We aimed to reveal the role of Derlin-3 in the ERAD system using the liver, pancreas, and kidney obtained from different mouse genotypes. We performed coimmunoprecipitation and sucrose density gradient centrifugation to unravel the dynamic nature of ERAD complexes. We observed that Derlin-3 is exclusively expressed in the pancreas, and its deficiency leads to the destabilization of Herp and accumulation of ERAD substrates. Under normal conditions, Complex-1a predominantly contains Herp, Derlin-2, HRD1, and SEL1L, and under ER stress, Complex-1b contains Herp, Derlin-3 (instead of Derlin-2), HRD1, and SEL1L. Complex-2 is upregulated under ER stress and contains Derlin-1, Derlin-2, p97, and VIMP. Derlin-3 deficiency suppresses the transition of Derlin-2 from Complex-1a to Complex-2 under ER stress. In the pancreas, Derlin-3 deficiency blocks Derlin-2 transition. In conclusion, the composition of ERAD complexes is tissue-specific and changes in response to ER stress in a Derlin-3-dependent manner. Derlin-3 may play a key role in changing ERAD complex compositions to overcome ER stress.


2018 ◽  
Vol 217 (3) ◽  
pp. 975-995 ◽  
Author(s):  
Dijin Xu ◽  
Yuqi Li ◽  
Lizhen Wu ◽  
Ying Li ◽  
Dongyu Zhao ◽  
...  

Lipid incorporation from endoplasmic reticulum (ER) to lipid droplet (LD) is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link mediating ER and LD cross talk remains elusive. Here, we identified Rab18 as an important Rab guanosine triphosphatase in controlling LD growth and maturation. Rab18 deficiency resulted in a drastically reduced number of mature LDs and decreased lipid storage, and was accompanied by increased ER stress. Rab3GAP1/2, the GEF of Rab18, promoted LD growth by activating and targeting Rab18 to LDs. LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER–LD contact. Cells with defects in the NRZ/SNARE complex function showed reduced LD growth and lipid storage. Overall, our data reveal that the Rab18-NRZ-SNARE complex is critical protein machinery for tethering ER–LD and establishing ER–LD contact to promote LD growth.


2008 ◽  
Vol 233 (10) ◽  
pp. 1289-1300 ◽  
Author(s):  
Peng Zhao ◽  
Xiaoyan Xiao ◽  
Agnes S. Kim ◽  
M. Fatima Leite ◽  
Jinxia Xu ◽  
...  

The endoplasmic reticulum (ER) is exquisitely sensitive to changes in its internal environment. Various conditions, collectively termed “ER stress”, can perturb ER function, leading to the activation of a complex response known as the unfolded protein response (UPR). Although c-Jun N-terminal kinase (JNK) activation is nearly always associated with cell death by various stimuli, the functional role of JNK in ER stress-induced cell death remains unclear. JNK regulates gene expression through the phosphorylation and activation of transcription factors, such as c-Jun. Here, we investigated the role of c-Jun in the regulation of ER stress-related genes. c-Jun expression levels determined the response of mouse fibroblasts to ER stress induced by thapsigargin (TG, an inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase). c-jun−/− mouse fibroblast cells were more sensitive to TG-induced cell death compared to wild-type mouse fibroblasts, while reconstitution of c-Jun expression in c-jun−/− cells (c-Jun Re) enhanced resistance to TG-induced cell death. The expression levels of ER chaperones Grp78 and Gadd153 induced by TG were lower in c-Jun Re than in c-jun−/− cells. Moreover, TG treatment significantly increased calcineurin activity in c-jun−/− cells, but not in c-Jun Re cells. In c-Jun Re cells, TG induced the expression of Adapt78, also known as the Down syndrome critical region 1 (DSCR1), which is known to block calcineurin activity. Taken together, our findings suggest that c-Jun, a transcription factor downstream of the JNK signaling pathway, up-regulates Adapt78 expression in response to TG-induced ER stress and contributes to protection against TG-induced cell death.


2021 ◽  
Author(s):  
Viorica Liebe Lastun ◽  
Matthew Freeman

In metazoans, the architecture of the endoplasmic reticulum (ER) differs between cell types, and undergoes major changes through the cell cycle and according to physiological needs. Although much is known about how the different ER morphologies are generated and maintained, especially the ER tubules, how context dependent changes in ER shape and distribution are regulated and the factors involved are less characterized. Here, we show that RHBDL4, an ER-resident rhomboid protease, modulates the shape and distribution of the ER, especially under conditions that require rapid changes in the ER sheet distribution, including ER stress. RHBDL4 interacts with CLIMP-63, a protein involved in ER sheet stabilisation, and with the cytoskeleton. Mice lacking RHBDL4 are sensitive to ER stress and develop liver steatosis, a phenotype associated with unresolved ER stress. Our data introduce a new physiological role of RHBDL4 and also imply that this function does not require its enzymatic activity.


2005 ◽  
Vol 25 (17) ◽  
pp. 7522-7533 ◽  
Author(s):  
Zhi-Ming Huang ◽  
Thomas Tan ◽  
Hiderou Yoshida ◽  
Kazutoshi Mori ◽  
Yanjun Ma ◽  
...  

ABSTRACT IRE1-alpha is an integral membrane protein of the endoplasmic reticulum (ER) that is a key sensor in the cellular transcriptional response to stress in the ER. Upon induction of ER stress, IRE1-alpha is activated, resulting in the synthesis of the active form of the transcription factor XBP1 via IRE1-mediated splicing of its mRNA. In this report, we have examined the role of IRE1-alpha and XBP1 in activation of the hepatitis B virus S promoter by ER stress. Cotransfection experiments revealed that overexpression of either IRE1-alpha or XBP1 activated this promoter. Conversely, cotransfected dominant-negative IRE1-alpha or small interfering RNA directed against XBP1 decreased the activation of the S promoter by ER stress, confirming an important role for the IRE1-alpha/XBP1 signaling pathway in activation of the S promoter. However, XBP1 does not bind directly to the S promoter; rather, a novel S promoter-binding complex that does not contain XBP1 is induced in cells undergoing ER stress in an XBP1-dependent manner. This complex, as well as transcriptional activation of the S promoter, is induced by ER stress in hepatocytes but not in fibroblasts, despite the presence of active XBP1 in the latter. Thus, the hepatitis B virus S promoter responds to a novel, cell type-restricted transcriptional pathway downstream of IRE1-alpha and XBP1.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Takehiko Kujiraoka ◽  
Yasushi Satoh ◽  
Makoto Ayaori ◽  
Yasunaga Shiraishi ◽  
Yuko Arai-Nakaya ◽  
...  

Background Insulin signaling comprises 2 major cascades, the IRS/PI3K/Akt and Ras/Raf/MEK/ERK pathways. Many studies on the tissue-specific effects of the former pathway had been conducted, however, the role of the latter cascade in tissue-specific insulin resistance had not been investigated. High glucose/fatty acid toxicity, inflammation and oxidative stress, all of which are associated with insulin resistance, can activate ERK. Liver plays a central role of metabolism and hepatosteatosis (HST) is associated with vascular diseases. The aim of this study is to elucidate the role of hepatic ERK2 in HST, metabolic remodeling and endothelial dysfunction. Methods Serum biomarkers of vascular complications in human were compared between subjects with and without HST diagnosed by echography for regular medical checkup. Next, we created liver-specific ERK2 knockout mice (LE2KO) and fed them with a high-fat/high-sucrose diet (HFHSD) for 20 weeks. The histological analysis, the expression of hepatic sarco/endoplasmic reticulum (ER) Ca 2+ -ATPase 2 (SERCA2) and glucose-tolerance/insulin-sensitivity (GT/IS) were tested. Vascular superoxide production and endothelial function were evaluated with dihydroethidium staining and isometric tension measurement of aorta. Results The presence of HST significantly increased HOMA-IR, an indicator of insulin resistance or atherosclerotic index in human. HFHSD-fed LE2KO revealed a marked exacerbation in HST and metabolic remodeling represented by the impairment of GT/IS, elevated serum free fatty acid and hyperhomocysteinemia without changes in body weight, blood pressure and serum cholesterol/triglyceride levels. In the HFHSD-fed LE2KO, mRNA and protein expressions of hepatic SERCA2 were significantly decreased, which resulted in hepatic ER stress. Induction of vascular superoxide production and remarkable endothelial dysfunction were also observed in them. Conclusions Hepatic ERK2 revealed the suppression of hepatic ER stress and HST in vivo , which resulted in protection from vascular oxidative stress and endothelial dysfunction. HST with hepatic ER stress can be a prominent risk of vascular complications by metabolic remodeling and oxidative stress in obese-related diseases.


2019 ◽  
Vol 44 (5) ◽  
pp. 599-610 ◽  
Author(s):  
Benan Pelin Sermikli ◽  
Gulizar Aydogdu ◽  
Afsar Abbasi Taghidizaj ◽  
Erkan Yilmaz

Abstract Background Obesity is a global public health problem. Obesity closely associated with various metabolic diseases such as; insulin resistance, hypertension, dyslipidemia and cardiovascular diseases. Endoplasmic reticulum (ER) stress is a critical factor for insulin resistance. O-linked N-acetyl-glucosamine (O-GlcNAc); is the post-translational modification which is has a vital role in biological processes; including cell signaling, in response to nutrients, stress and other extracellular stimuli. Materials and methods In this study, we aimed to investigate the role of O-GlcNAc modification in the context of obesity and obesity-associated insulin resistance in adipose tissue. For this purpose, first, the visceral and epididymal adipose tissues of obese and insulin resistant C57BL/6 Lepob/Lepob and wild-type mice were used to determine the O-GlcNAc modification pattern by western blot. Secondly, the external stimulation of O-GlcNAc modification in wild-type mice achieved by intraperitoneal 5 mg/kg/day glucosamine injection every 24 h for 5 days. The effect of increased O-GlcNAc modification on insulin resistance and ER stress investigated in adipose tissues of glucosamine challenged wild-type mice through regulation of the insulin signaling pathway and unfolded protein response (UPR) elements by western blot. In addition to that, the O-GlcNAc status of the insulin receptor substrate-1 (IRS1) investigated in epididymal and visceral adipose tissues of ob/ob, wild-type and glucosamine challenged mice by immunoprecipitation. Results We found that reduced O-GlcNAc levels in visceral and epididymal adipose tissues of obese and insulin-resistant ob/ob mice, although interestingly we observed that increased O-GlcNAc modification in glucosamine challenged wild-type mice resulted in insulin resistance and ER stress. Furthermore, we demonstrated that the IRS1 was modified with O-GlcNAc in visceral and epididymal adipose tissues in both ob/ob mice and glucosamine-injected mice, and was compatible with the serine phosphorylation of this modification. Conclusion Our results suggest that O-GlcNAcylation of proteins is a crucial factor for intracellular trafficking regulates insulin receptor signaling and UPR depending on the cellular state of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document