scholarly journals MicroRNA regulation of CTP synthase and cytoophidium in Drosophila melanogaster

2018 ◽  
Author(s):  
Najat Dzaki ◽  
Woo Wai Kan ◽  
Ghows Azzam

AbstractCTPsyn is a crucial metabolic enzyme which synthesizes CTP molecules through the de novo or salvage pathway. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Although this property is retained amongst orthologues, and cytoophidia are therefore found across kingdoms, the mechanisms behind their formation remain unknown. Micro-RNAs (miRNAs) are single-stranded RNA with length of 20 – 22 nucleotides, capable of exerting mRNA silencing and degradation as a form of regulation. D. melanogaster itself has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn may too come under the regulatory effects of these small RNAs. A thorough miRNA overexpression involving 123 UAS-miRNA lines, followed by staining of ovarian cytoophidia dme-egg chambers, revealed a small group of candidates which confer either a lengthening or truncating effect on the structure. Prime candidates are identified on the basis of consistency. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed that none of the four candidates may actually do so. This suggests that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme’s regulation, but may uncover new facets of closely related pathways as well.

Author(s):  
Ida Höijer ◽  
Josefin Johansson ◽  
Sanna Gudmundsson ◽  
Chen-Shan Chin ◽  
Ignas Bunikis ◽  
...  

AbstractA much-debated concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target sites and activity is challenging. Here we present SMRT-OTS and Nano-OTS, two amplification-free long-read sequencing protocols for detection of gRNA driven digestion of genomic DNA by Cas9. The methods were assessed using the human cell line HEK293, which was first re-sequenced at 18x coverage using highly accurate (HiFi) SMRT reads to get a detailed view of all on- and off-target binding regions. We then applied SMRT-OTS and Nano-OTS to investigate the specificity of three different gRNAs, resulting in a set of 55 high-confidence gRNA binding sites identified by both methods. Twenty-five (45%) of these sites were not reported by off-target prediction software, either because they contained four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. We further discovered that a heterozygous SNP can cause allele-specific gRNA binding. Finally, by performing a de novo genome assembly of the HiFi reads, we were able to re-discover 98.7% of the gRNA binding sites without any prior information about the human reference genome. This suggests that CRISPR-Cas9 off-target sites can be efficiently mapped also in organisms where the genome sequence is unknown. In conclusion, the amplification-free sequencing protocols revealed many gRNA binding sites in vitro that would be difficult to predict based on gRNA sequence alignment to a reference. Nevertheless, it is still unknown whether in vivo off-target editing would occur at these sites.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yanqiong Zhang ◽  
Ming Bai ◽  
Bo Zhang ◽  
Chunfang Liu ◽  
Qiuyan Guo ◽  
...  

Abstract Wu-tou decoction (WTD) has been extensively used for the treatment of rheumatoid arthritis (RA). Due to lack of appropriate methods, pharmacological mechanisms of WTD acting on RA have not been fully elucidated. In this study, a list of putative targets for compositive compounds containing in WTD were predicted by drugCIPHER-CS. Then, the interaction network of the putative targets of WTD and known RA-related targets was constructed and hub nodes were identified. After constructing the interaction network of hubs, four topological features of each hub, including degree, node betweenness, closeness and k-coreness, were calculated and 79 major hubs were identified as candidate targets of WTD, which were implicated into the imbalance of the nervous, endocrine and immune (NEI) systems, leading to the main pathological changes during the RA progression. Further experimental validation also demonstrated the preventive effects of WTD on inflammation and joint destruction in collagen-induced arthritis (CIA) rats and its regulatory effects on candidate targets both in vitro and in vivo systems. In conclusion, we performed an integrative analysis to offer the convincing evidence that WTD may attenuate RA partially by restoring the balance of NEI system and subsequently reversing the pathological events during RA progression.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A488-A488
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundImmunotherapy (IT) has evolved as an essential pillar against cancer due to unprecedented successes in several malignancies. However, only 10% of glioblastoma (GBM) patients respond to IT, presumably due to the paucity of tumor-infiltrating lymphocytes. Radiotherapy (RT) can promote T cells infiltration to generate anti-tumor immune responses, but can also exacerbate potent immune inhibitory mechanism to facilitate immune evasion. Among which, metabolic reprogramming of irradiated GBM represents an emerging mechanism of immune resistance. Notably, increased lipogenesis by the fatty acid synthase (FASN) is a hallmark of GBM that was shown to mediate radioresistance and immunosuppression in other cancer types. Therefore, we hypothesize that de novo lipid biosynthesis mediated by FASN represents an innate immune evasion mechanism in irradiated GBM.MethodsWe first defined metabolic changes 24hrs after RT (10 gray - Gy) by seahorse assay and metabolomics in the syngeneic murine GBM model, GL261. To confirm alterations in the lipogenesis pathway, we measured the expression FASN by western blot and the cell lipid content by BODIPY staining and flow cytometry. Finally, GL261 cells were engineered to express an inducible shRNA silencing FASN (GL261shFASN) or its non-silencing control (GL261shNS) and orthotopically implanted on day 0. On day 6, knockdown of FASN was induced by feeding the mice with doxycycline. On day 11, mice received 10Gy irradiation selectively to the tumor. Evaluation of the immune contexture was determined by in situ immunofluorescence on day 19 (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsMitochondrial respiration and glycolysis were significantly enhanced in RT-GL261 cells in vitro. Metabolomic profiling of RT-GL261 cells showed a strong increase in pathways related to nucleotide, amino acids and lipid metabolism. Consistent with this last observation, we found upregulation of FASN and lipids accumulation in RT-GL261 cells as compared to non-RT GL261 cells. In vivo, GL261shFASN tumors presented increased infiltration of CD11c+ and CD8+ T cells as compared to GL261shNS tumors; an observation that was amplified in RT-GL261shFASN tumors. Consistent with a recruitment of CD11c+ and CD8+ T cells, 43% of mice bearing GL261shFASN tumor survived for at least 60 days without tumor regrowth vs. 35 days in GL261shNS tumor bearing mice.ConclusionsAltogether our data suggest that RT is inducing a metabolic reprogramming of GBM by promoting FASN-mediated lipid synthesis to foster immunosuppression. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize irradiated GBM to ITs.Ethics ApprovalAll mice experiments were approved by the Institutional Animal Care and Use Committee, protocol number 2019-0042.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 570-580 ◽  
Author(s):  
Kristopher A. Sarosiek ◽  
Raquel Malumbres ◽  
Hovav Nechushtan ◽  
Andrew J. Gentles ◽  
Eli Avisar ◽  
...  

Abstract Interleukin-21 (IL-21), a member of the IL-2 cytokine family, has diverse regulatory effects on natural killer (NK), T, and B cells. In contrast to other cytokines that are usually immunostimulatory, IL-21 can induce apoptosis of murine B cells at specific activation-differentiation stages. This effect may be used for treatment of B-cell malignancies. Herein we report that diffuse large B-cell lymphoma (DLBCL) cell lines exhibit widespread expression of the IL-21 receptor (IL-21R) and that IL-21 stimulation leads to cell-cycle arrest and caspase-dependent apoptosis. IL-21 also induces apoptosis in de novo DLBCL primary tumors but does not affect viability of human healthy B cells. Furthermore, IL-21 promotes tumor regression and prolongs survival of mice harboring xenograft DLBCL tumors. The antilymphoma effects of this cytokine are dependent on a mechanism involving IL-21–activated signal transducer and activator of transcription 3 (STAT3) up-regulating expression of c-Myc. This up-regulation promotes a decrease in expression of antiapoptotic Bcl-2 and Bcl-XL proteins triggering cell death. Our results represent one of the first examples in which the STAT3–c-Myc signaling pathway, which can promote survival and oncogenesis, can induce apoptosis in neoplastic cells. Moreover, based on IL-21's potency in vitro and in animal models, our findings indicate that this cytokine should be examined in clinical studies of DLBCL.


1969 ◽  
Vol 08 (02) ◽  
pp. 196-206 ◽  
Author(s):  
Dieter. Kummer
Keyword(s):  

ZusammenfassungIn nahezu glucosefreier Suspension von Ehrlich-Ascitescarcinomzellen bewirkt die Zufuhr von Glucose 2,5 × 10–4 bis 10–2 M:1. Hemmung der [14C] Thymidin-Einbaurate in die Zellen.2. Aktivierung des Ribonucleotid-Reductase-Systems und damit Stimulierung der Desoxyribonucleotidsynthese (auch der Thymidintriphosphat-de-novo-Synthese).3. Blockierung der Thymidinkinase über Endprodukthemmung, wodurch die Minderung des [14C] Thymidin-Einbaus in die Zellen erklärbar ist.


Author(s):  
Альбина Шамсуновна Ахметова ◽  
Альфия Ануровна Зарипова
Keyword(s):  

Показана возможность эффективного применения метода культуры тканей для размножения Allium neriniflorum (Herb.) Backer. Исследуемый вид является декоративным растением, размножение которого затруднено из-за низкой всхожести семян и ослабленной способности к формированию дочерних луковиц. Разработана технология клонального микроразмножения из стерильных луковиц. В качестве исходного материала использовали семена A. neriniflorum. Подобраны условия стерилизации, позволяющие достичь максимального числа (75 %) жизнеспособных эксплантов. Поверхностную стерилизацию проводили в ламинар-боксе с использованием в качестве стерилизующего агента 0,1 % раствор диацида. Семена сначала обрабатывали 70 % этанолом, затем стерилизующим раствором. Экспозиция стерилизующих растворов составляла от 5 до 9 мин. Показано, что способность к индуцированному морфогенезу существенно зависит от состава питательной среды. Максимальное число луковиц образовывалось на среде QL — 9 шт./эксплант. Исследуемые виды обладали высокой способностью к мультипликации и формированию полноценных растений при подобранных условиях культивирования in vitro. Выявленная морфогенетическая активность зачаточного побега, сегментов чешуй и донца стерильной луковицы A. neriniflorum, проявляющаяся в способности регенерировать побеги de novo, что возможно только в культуре in vitro, обеспечивает формирование полноценных луковиц. Луковицы, полученные in vitro, включали в последующие циклы микроразмножения. Культура тканей и органов in vitro позволяет размножать A. neriniflorum с более высоким коэффициентом размножения. От одной стерильной луковицы можно получить до 7000 луковиц в год. При традиционном вегетативном способе размножения материнская луковица формирует 1, редко 2 дочерние луковицы.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2019 ◽  
Vol 19 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Sachin Jangra ◽  
Gayathri Purushothaman ◽  
Kapil Juvale ◽  
Srimadhavi Ravi ◽  
Aishwarya Menon ◽  
...  

Background & Objective:Helicobacter pylori infection is one of the primary causes of peptic ulcer followed by gastric cancer in the world population. Due to increased occurrences of multi-drug resistance to the currently available antibiotics, there is an urgent need for a new class of drugs against H. pylori. Inosine 5′-monophosphate dehydrogenase (IMPDH), a metabolic enzyme plays a significant role in cell proliferation and cell growth. It catalyses guanine nucleotide synthesis. IMPDH enzyme has been exploited as a target for antiviral, anticancer and immunosuppressive drugs. Recently, bacterial IMPDH has been studied as a potential target for treating bacterial infections. Differences in the structural and kinetic parameters of the eukaryotic and prokaryotic IMPDH make it possible to target bacterial enzyme selectively.Methods:In the current work, we have synthesised and studied the effect of substituted 3-aryldiazenyl indoles on Helicobacter pylori IMPDH (HpIMPDH) activity. The synthesised molecules were examined for their inhibitory potential against recombinant HpIMPDH.Results:In this study, compounds 1 and 2 were found to be the most potent inhibitors amongst the database with IC50 of 0.8 ± 0.02µM and 1 ± 0.03 µM, respectively.Conclusion:When compared to the most potent known HpIMPDH inhibitor molecule C91, 1 was only four-fold less potent and can be a good lead for further development of selective and potent inhibitors of HpIMPDH.


2020 ◽  
Vol 17 (2) ◽  
pp. 125-132
Author(s):  
Marjanu Hikmah Elias ◽  
Noraziah Nordin ◽  
Nazefah Abdul Hamid

Background: Chronic Myeloid Leukaemia (CML) is associated with the BCRABL1 gene, which plays a central role in the pathogenesis of CML. Thus, it is crucial to suppress the expression of BCR-ABL1 in the treatment of CML. MicroRNA is known to be a gene expression regulator and is thus a good candidate for molecularly targeted therapy for CML. Objective: This study aims to identify the microRNAs from edible plants targeting the 3’ Untranslated Region (3’UTR) of BCR-ABL1. Methods: In this in silico analysis, the sequence of 3’UTR of BCR-ABL1 was obtained from Ensembl Genome Browser. PsRNATarget Analysis Server and MicroRNA Target Prediction (miRTar) Server were used to identify miRNAs that have binding conformity with 3’UTR of BCR-ABL1. The MiRBase database was used to validate the species of plants expressing the miRNAs. The RNAfold web server and RNA COMPOSER were used for secondary and tertiary structure prediction, respectively. Results: In silico analyses revealed that cpa-miR8154, csi-miR3952, gma-miR4414-5p, mdm-miR482c, osa-miR1858a and osa-miR1858b show binding conformity with strong molecular interaction towards 3’UTR region of BCR-ABL1. However, only cpa-miR- 8154, osa-miR-1858a and osa-miR-1858b showed good target site accessibility. Conclusion: It is predicted that these microRNAs post-transcriptionally inhibit the BCRABL1 gene and thus could be a potential molecular targeted therapy for CML. However, further studies involving in vitro, in vivo and functional analyses need to be carried out to determine the ability of these miRNAs to form the basis for targeted therapy for CML.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 546
Author(s):  
Miroslava Nedyalkova ◽  
Vasil Simeonov

A cheminformatics procedure for a partitioning model based on 135 natural compounds including Flavonoids, Saponins, Alkaloids, Terpenes and Triterpenes with drug-like features based on a descriptors pool was developed. The knowledge about the applicability of natural products as a unique source for the development of new candidates towards deadly infectious disease is a contemporary challenge for drug discovery. We propose a partitioning scheme for unveiling drug-likeness candidates with properties that are important for a prompt and efficient drug discovery process. In the present study, the vantage point is about the matching of descriptors to build the partitioning model applied to natural compounds with diversity in structures and complexity of action towards the severe diseases, as the actual SARS-CoV-2 virus. In the times of the de novo design techniques, such tools based on a chemometric and symmetrical effect by the implied descriptors represent another noticeable sign for the power and level of the descriptors applicability in drug discovery in establishing activity and target prediction pipeline for unknown drugs properties.


Sign in / Sign up

Export Citation Format

Share Document