scholarly journals In vivo microscopy reveals the impact ofPseudomonas aeruginosasocial interactions on host colonization

2018 ◽  
Author(s):  
Chiara Rezzoagli ◽  
Elisa T. Granato ◽  
Rolf Kümmerli

AbstractPathogenic bacteria engage in social interactions to colonize hosts, which include quorum-sensing-mediated communication and the secretion of virulence factors that can be shared as “public goods” between individuals. While in-vitro studies demonstrated that cooperative individuals can be displaced by “cheating” mutants freeriding on social acts, we know little about social interactions in infections. Here, we developed a live imaging system to track virulence factor expression and social strain interactions in the human pathogenPseudomonas aeruginosacolonizing the gut ofCaenorhabditis elegans. We found that shareable siderophores and quorum-sensing systems are expressed during infections, affect host gut colonization, and benefit nonproducers. However, non-producers were unable to cheat and outcompete producers, probably due to the spatial segregation of strains within the gut. Our results shed new light on bacterial social interactions in infections and reveal potential limits of therapeutic approaches that aim to capitalize on social dynamics between strains for infection control.

2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


2021 ◽  
Vol 3 ◽  
Author(s):  
Débora Campos ◽  
Ricardo Goméz-García ◽  
Diana Oliveira ◽  
Ana Raquel Madureira

ABSTRACT The oral delivery of compounds associated with diet or medication have an impact on the gut microbiota balance, which in turn, influences the physiologic process. Several reports have shown significant advances in clarifying the impact, interactions and outcomes of oral intake of nanoparticles and the human gut. These interactions may affect the bioavailability of the delivered compounds. In addition, there is a considerable breakthrough in the development of antimicrobial nanoparticles for intestinal pathogenic bacteria. Several in vitro fermentation and in vivo models have been developed throughout the years and were used to test these systems. The methodologies and studies carried out so far on the modulation of human and animal gut microbiome by oral delivery nanosized materials were reviewed. Overall, the available in vitro studies mimic the real physiological events enabling to select the best production conditions of nanoparticulate systems in a preliminary stage of research. On the other hand, animal studies can be used to access the dosage effect, safety and correlation between haematological, biochemical and symptoms, with gut microbiota groups and metabolites.


2008 ◽  
Vol 115 (11) ◽  
pp. 343-351 ◽  
Author(s):  
Pisake Boontham ◽  
Adrian Robins ◽  
Palanichamy Chandran ◽  
David Pritchard ◽  
Miguel Cámara ◽  
...  

Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4+ cells, but not CD8+ cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4+ Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Eric F. Kong ◽  
Christina Tsui ◽  
Sona Kucharíková ◽  
Patrick Van Dijck ◽  
Mary Ann Jabra-Rizk

ABSTRACT In microbial biofilms, microorganisms utilize secreted signaling chemical molecules to coordinate their collective behavior. Farnesol is a quorum sensing molecule secreted by the fungal species Candida albicans and shown to play a central physiological role during fungal biofilm growth. Our pervious in vitro and in vivo studies characterized an intricate interaction between C. albicans and the bacterial pathogen Staphylococcus aureus, as these species coexist in biofilm. In this study, we aimed to investigate the impact of farnesol on S. aureus survival, biofilm formation, and response to antimicrobials. The results demonstrated that in the presence of exogenously supplemented farnesol or farnesol secreted by C. albicans in biofilm, S. aureus exhibited significantly enhanced tolerance to antimicrobials. By using gene expression studies, S. aureus mutant strains, and chemical inhibitors, the mechanism for the enhanced tolerance was attributed to upregulation of drug efflux pumps. Importantly, we showed that sequential exposure of S. aureus to farnesol generated a phenotype of high resistance to antimicrobials. Based on the presence of intracellular reactive oxygen species upon farnesol exposure, we hypothesize that antimicrobial tolerance in S. aureus may be mediated by farnesol-induced oxidative stress triggering the upregulation of efflux pumps, as part of a general stress response system. Hence, in mixed biofilms, C. albicans may influence the pathogenicity of S. aureus through acquisition of a drug-tolerant phenotype, with important therapeutic implications. Understanding interspecies signaling in polymicrobial biofilms and the specific drug resistance responses to secreted molecules may lead to the identification of novel targets for drug development.


2015 ◽  
Vol 112 (34) ◽  
pp. 10756-10761 ◽  
Author(s):  
Sandra Breum Andersen ◽  
Rasmus Lykke Marvig ◽  
Søren Molin ◽  
Helle Krogh Johansen ◽  
Ashleigh S. Griffin

Laboratory experiments show that social interactions between bacterial cells can drive evolutionary change at the population level, but significant challenges limit attempts to assess the relevance of these findings to natural populations, where selection pressures are unknown. We have increasingly sophisticated methods for monitoring phenotypic and genotypic dynamics in bacteria causing infectious disease, but in contrast, we lack evidence-based adaptive explanations for those changes. Evolutionary change during infection is often interpreted as host adaptation, but this assumption neglects to consider social dynamics shown to drive evolutionary change in vitro. We provide evidence to show that long-term behavioral dynamics observed in a pathogen are driven by selection to outcompete neighboring conspecific cells through social interactions. We find thatPseudomonas aeruginosabacteria, causing lung infections in patients with cystic fibrosis, lose cooperative iron acquisition by siderophore production during infection. This loss could be caused by changes in iron availability in the lung, but surprisingly, we find that cells retain the ability to take up siderophores produced by conspecifics, even after they have lost the ability to synthesize siderophores. Only when cooperative producers are lost from the population is the receptor for uptake lost. This finding highlights the potential pitfalls of interpreting loss of function in pathogenic bacterial populations as evidence for trait redundancy in the host environment. More generally, we provide an example of how sequence analysis can be used to generate testable hypotheses about selection driving long-term phenotypic changes of pathogenic bacteria in situ.


2012 ◽  
Vol 56 (5) ◽  
pp. 2314-2325 ◽  
Author(s):  
Tim Holm Jakobsen ◽  
Maria van Gennip ◽  
Richard Kerry Phipps ◽  
Meenakshi Sundaram Shanmugham ◽  
Louise Dahl Christensen ◽  
...  

ABSTRACTIn relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria likePseudomonas aeruginosato synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previousin vitroandin vivostudies revealed a significant inhibition ofP. aeruginosaQS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensivein vitroandin vivostudies, the effect of synthetic ajoene towardP. aeruginosawas elucidated. DNA microarray studies of ajoene-treatedP. aeruginosacultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment ofin vitrobiofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infectingP. aeruginosawas detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Pooja Patel ◽  
Chinmayi Joshi ◽  
Vijay Kothari

This study investigated antipathogenic efficacy of a polyherbal wound-healing formulation Herboheal against three multidrug-resistant strains of gram-negative bacterial pathogens associated with wound infections. Herboheal was evaluated for its quorum-modulatory potential against three different human-pathogenic bacteria, first in vitro through the broth dilution assay and then in vivo in the model host Caenorhabditis elegans. Herboheal at ≥0.1% v/v was able to inhibit (19–55%) in vitro production of quorum sensing-regulated pigments in all these bacteria and seemed to interfere with bacterial quorum sensing by acting as a signal-response inhibitor. This formulation could compromise haemolytic activity of all three bacteria by ∼18–69% and induced their catalase activity by ∼8–21%. Herboheal inhibited P. aeruginosa biofilm formation up to 40%, reduced surface hydrophobicity of P. aeruginosa cells by ∼9%, and also made them (25%) more susceptible to lysis by human serum. Antibiotic susceptibility of all three bacteria was modulated owing to pretreatment with Herboheal. Exposure of these test pathogens to Herboheal (≥0.025% v/v) effectively reduced their virulence towards the nematode Caenorhabditis elegans. Repeated subculturing of P. aeruginosa on the Herboheal-supplemented growth medium did not induce resistance to Herboheal in this mischievous pathogen, and this polyherbal extract was also found to exert a post-extract effect on P. aeruginosa, wherein virulence of the Herboheal-unexposed daughter cultures, of the Herboheal-exposed parent culture, was also found to be attenuated. Overall, this study indicates Herboheal formulation to be an effective antipathogenic preparation and validates its indicated traditional therapeutic use as a wound-care formulation.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyung-Jo Lee ◽  
You-Chul Jung ◽  
Soon-Jung Park ◽  
Kyu-Ho Lee

ABSTRACTCapsular polysaccharide (CPS) is essential for the dispersal of biofilms formed by the pathogenic bacteriumVibrio vulnificus. CPS production is induced by the quorum-sensing (QS) master regulator SmcR when biofilms mature. However,V. vulnificusbiofilms formed under heat shock conditions did not exhibit the dispersion stage. Transcripts of the CPS gene cluster were at basal levels in the heat-exposed cell owing to reduced cellular levels of SmcR. At least two proteases induced by heat shock, ClpPA and Lon, were responsible for determining the instability of SmcR.In vitroandin vivoassays demonstrated that SmcR levels were regulated via proteolysis by these proteases, with preferential proteolysis of monomeric SmcR. Thus, CPS production was not induced by QS when bacteria were heat treated. Further studies performed with otherVibriospecies demonstrated that high temperature deactivated the QS circuits by increased proteolysis of their QS master regulators, thus resulting in alterations to the QS-regulated phenotypes, including biofilm formation.IMPORTANCEThe term "quorum-sensing mechanism" is used to describe diverse bacterial cell density-dependent activities that are achieved by sensing of the signaling molecules and subsequent signal transduction to the master regulators. These well-known bacterial regulatory systems regulate the expression of diverse virulence factors and the construction of biofilms in pathogenic bacteria. There have been numerous studies designed to control bacterial quorum sensing by using small molecules to antagonize the quorum-sensing regulatory components or to interfere with the signaling molecules. In the present study, we showed that the quorum-sensing regulatory circuits of pathogenicVibriospecies were deactivated by heat shock treatment via highly increased proteolysis of the master transcription factors. Our results showed a new mode of quorum deactivation which can be achieved under conditions of high but nonlethal temperature even if the ambient signaling molecules may reach the levels representing high cell density.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


2014 ◽  
Vol 1 (3) ◽  
pp. 3-7
Author(s):  
O. Zhukorskyy ◽  
O. Hulay

Aim. To estimate the impact of in vivo secretions of water plantain (Alisma plantago-aquatica) on the popula- tions of pathogenic bacteria Erysipelothrix rhusiopathiae. Methods. The plants were isolated from their natural conditions, the roots were washed from the substrate residues and cultivated in laboratory conditions for 10 days to heal the damage. Then the water was changed; seven days later the selected samples were sterilized using fi lters with 0.2 μm pore diameter. The dilution of water plantain root diffusates in the experimental samples was 1:10–1:10,000. The initial density of E. rhusiopathiae bacteria populations was the same for both experimental and control samples. The estimation of the results was conducted 48 hours later. Results. When the dilution of root diffusates was 1:10, the density of erysipelothrixes in the experimental samples was 11.26 times higher than that of the control, on average, the dilution of 1:100 − 6.16 times higher, 1:1000 – 3.22 times higher, 1:10,000 – 1.81 times higher, respectively. Conclusions. The plants of A. plantago-aquatica species are capable of affecting the populations of E. rhusiopathiae pathogenic bacteria via the secretion of biologically active substances into the environment. The consequences of this interaction are positive for the abovementioned bacteria, which is demon- strated by the increase in the density of their populations in the experiment compared to the control. The intensity of the stimulating effect on the populations of E. rhusiopathiae in the root diffusates of A. plantago-aquatica is re- ciprocally dependent on the degree of their dilution. The investigated impact of water plantain on erysipelothrixes should be related to the topical type of biocenotic connections, the formation of which between the test species in the ecosystems might promote maintaining the potential of natural focus of rabies. Keywords: Alisma plantago-aquatica, in vivo secretions, Erysipelothrix rhusiopathiae, population density, topical type of connections.


Sign in / Sign up

Export Citation Format

Share Document