scholarly journals Evaluation of the novel culture-based FAST-T system allowing selection of optimal antibiotics for critically ill patients within 4 h (for other than bloodstream infectious).

2019 ◽  
Author(s):  
George Tetz ◽  
Victor Tetz

Rapid diagnostic tests are needed to improve patient care, particularly in immunocompromised hosts. Here, we describe the validation of a new phenotypic culture-based FAST-T method for rapid selection of antibiotics in vitro using specimens with mono- and polybacterial infections. FAST-T approach, which can be applied to any type of non-blood tissue, does not require isolation of pure bacterial cultures. FAST-T-selected antibiotics are those that can completely eliminate mixed bacterial infections in specimens. The method uses a novel FASM-T medium that allows more rapid bacterial growth of gram-positive and gram-negative monoisolates compared with that achieved with conventional laboratory media. The application of the FAST-T method in 122 bacterial species demonstrated overall sensitivity, specificity, positive predictive value, and negative predictive value of 99.6%, 98.1%, 98.5%, and 99.4%, respectively, already after 4 h. The overall category agreement with the outcome of standard testing was 98.9% with very major errors and major errors being detected in 1.2% and 0.6% of cases. The use of FASM-T medium in 20 clinical polymicrobial samples allowed culturing a more diverse set of bacteria, including fastidious species, compared with that achieved with the standard laboratory diagnostic and enabled, already within 4 h, accurate selection of the antibiotics that completely eliminated all cultivatable bacteria from clinical samples. In conclusion, FAST-T system may be a valuable tool in improving phenotypic-based antibiotic selection, enabling targeted empirical therapy and accurate antibiotic replacement, which is especially important in high-risk patients.

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Suzannah M. Schmidt-Malan ◽  
Avisya J. Mishra ◽  
Ammara Mushtaq ◽  
Cassandra L. Brinkman ◽  
Robin Patel

ABSTRACT Understanding which antimicrobial agents are likely to be active against Gram-negative bacilli can guide selection of antimicrobials for empirical therapy as mechanistic rapid diagnostics are adopted. In this study, we determined the MICs of a novel β-lactam–β-lactamase inhibitor combination, imipenem-relebactam, along with ceftolozane-tazobactam, imipenem, ertapenem, meropenem, ceftriaxone, and cefepime, against 282 drug-resistant isolates of Gram-negative bacilli. For isolates harboring blaKPC (n = 110), the addition of relebactam to imipenem lowered the MIC50/MIC90 from 16/>128 μg/ml for imipenem alone to 0.25/1 μg/ml. For isolates harboring blaCTX-M (n = 48), the MIC50/MIC90 of ceftolozane-tazobactam were 0.5/16 μg/ml (83% susceptible). For isolates harboring blaCMY-2 (n = 17), the MIC50/MIC90 of ceftolozane-tazobactam were 4/8 μg/ml (47% susceptible). Imipenem-relebactam was active against most KPC-producing (but not NDM- or IMP-producing) Enterobacteriaceae and is an encouraging addition to the present antibiotic repertoire.


2019 ◽  
Vol 64 (No. 02) ◽  
pp. 67-77 ◽  
Author(s):  
K Nedbalcova ◽  
M Zouharova ◽  
D Sperling

The post-antibiotic effect is defined as the period of bacterial growth suppression that persists after a limited exposure of organisms to antimicrobials and knowledge of its duration is important in establishing and optimising current dosing schedules for the treatment of bacterial infections. The post-antibiotic effect of marbofloxacin, enrofloxacin and amoxicillin were evaluated in vitro for Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida strains which originated from clinical samples of diseased pigs and were confirmed as susceptible to all tested antimicrobials based on determination of minimal inhibitory concentrations. The post-antibiotic effect for individual antimicrobials was monitored at five and ten times minimum inhibitory concentrations for one and two hours. The duration of the post-antibiotic effect for tested antimicrobials was found to exhibit the following order for all tested pathogens: marbofloxacin > enrofloxacin > amoxicillin. The longest duration of post-antibiotic effect of all tested antimicrobials was found in A. pleuropneumoniae and the shortest post-antibiotic effect duration was detected in P. multocida. No statistical differences in post-antibiotic effect duration were found within marbofloxacin and enrofloxacin in A. pleuropneumoniae and H. parasuis strains. In P. multocida strains there was a statistically significant difference (P = 0.0189). On the other hand, the differences between amoxicillin and marbofloxacin or enrofloxacin were statistically significant in all cases (P-values ranged between 0.0058 and 0.008). The prolonged post-antibiotic effect of fluoroquinolones and amoxicillin on important Gram-negative swine pathogens was confirmed. The results can be used to clarify the effect and mechanism of action of antimicrobial drugs in veterinary medicine.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Flora T. Mambe ◽  
Jean Na-Iya ◽  
Ghislain W. Fotso ◽  
Fred Ashu ◽  
Bathélémy Ngameni ◽  
...  

The present study aimed to assess the in vitro antibacterial and antibiotic modifying activities of methanol extracts prepared from the leaf (APL) and bark (APB) of Acacia polyacantha, fractions (APLa-d) and compounds isolated from APL against a panel of multidrug resistant (MDR) Gram-negative bacteria. Leaf extract was subjected to column chromatography for compounds isolation; antibacterial assays were performed on samples alone and with an efflux pump inhibitor (EPI), respectively, and several antibiotics on the tested bacteria. The phytochemical investigation of APL led to the isolation of stigmasterol (1), β-amyrin (2), 3-O-β-D-glucopyranosylstigmasterol (3), 3-O-methyl-D-chiro-inositol (4), epicatechin (5), quercetin-3-O-glucoside (6), 3-O-[β-D-xylopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (7), and 3-O-[β-galactopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (8). APL and APB had minimal inhibitory concentration (MIC) values ≤ 1024 μg/mL on 73.3% and 46.7% of the tested bacteria, respectively. APLb and APLd were effective against 88.9% of tested bacterial species with compound 8 showing the highest activity inhibiting 88.9% of tested bacteria. The EPI, phenylalanine-arginine-β-naphthylamide (PAßN), strongly improved the activity of APL, APLb, APLd, and compound 8 on all tested bacteria. Synergistic effects were obtained when APL and compounds 7 and 8 were combined with erythromycin (ERY), gentamycin (GEN), ciprofloxacin (CIP), and norfloxacin (NOR). The present study demonstrates the antibacterial potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with EPI.


2009 ◽  
Vol 54 (1) ◽  
pp. 230-238 ◽  
Author(s):  
Pamela McGhee ◽  
Catherine Clark ◽  
Klaudia M. Kosowska-Shick ◽  
Kensuke Nagai ◽  
Bonifacio Dewasse ◽  
...  

ABSTRACT CEM-101 had MIC ranges of 0.002 to 0.016 μg/ml against macrolide-susceptible pneumococci and 0.004 to 1 μg/ml against macrolide-resistant phenotypes. Only 3 strains with erm(B), with or without mef(A), had CEM-101 MICs of 1 μg/ml, and 218/221 strains had CEM-101 MICs of ≤0.5 μg/ml. CEM-101 MICs were as much as 4-fold lower than telithromycin MICs against all strains. For Streptococcus pyogenes, CEM-101 MICs ranged from 0.008 to 0.03 μg/ml against macrolide-susceptible strains and from 0.015 to 1 μg/ml against macrolide-resistant strains. Against erm(B) strains, erythromycin, azithromycin, and clarithromycin MICs were 32 to >64 μg/ml, while 17/19 strains had telithromycin MICs of 4 to 16 μg/ml; CEM-101 MICs were 0.015 to 1 μg/ml. By comparison, erm(A) and mef(A) strains had CEM-101 MICs of 0.015 to 0.5 μg/ml, clindamycin and telithromycin MICs of ≤1 μg/ml, and erythromycin, azithromycin, and clarithromycin MICs of 0.5 to >64 μg/ml. Pneumococcal multistep resistance studies showed that although CEM-101 yielded clones with higher MICs for all eight strains tested, seven of eight strains had clones with CEM-101 MICs that rose from 0.004 to 0.03 μg/ml (parental strains) to 0.06 to 0.5 μg/ml (resistant clones); for only one erm(B) mef(A) strain with a parental MIC of 1 μg/ml was there a resistant clone with a MIC of 32 μg/ml, with no detectable mutations in the L4, L22, or 23S rRNA sequence. Among two of five S. pyogenes strains tested, CEM-101 MICs rose from 0.03 to 0.25 μg/ml, and only for the one strain with erm(B) did CEM-101 MICs rise from 1 to 8 μg/ml, with no changes occurring in any macrolide resistance determinant. CEM-101 had low MICs as well as low potential for the selection of resistant mutants, independent of bacterial species or resistance phenotypes in pneumococci and S. pyogenes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10436
Author(s):  
José Ramos-Vivas ◽  
Joshua Superio ◽  
Jorge Galindo-Villegas ◽  
Félix Acosta

Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Opportunistic bacterial infections are common in the various parts of human body. In recent years bacterial species have shown resistance against a number of synthetic drugs. This study measured the antibacterial activity of bacterial strains against five common pathogenic bacteria related strains. Cup plate method and two fold serial dilution method were used to evaluated by antibacterial activity by the help of different bacterial related strains. The results revealed that Cisplatin (CIP) using natural as a polymer showed a minimum inhibitory concentration (MIC) at 250 mg/ml to 500 mg/ml of the broth against all bacterial strains. CIP using natural as a polymer was prepared different doses1000 μg/ml and 2000 μg/ ml and measured zone of inhibition dose dementedly reduced when compared to standard. The CIP using natural as a polymer exhibited strong anti-bacterial activity against five different species of bacteria and this may be attributed to various active components. Our research work has been indicated Nanoparticles containing CIP using natural as a polymer formulated for the enhanced anti-cancer activity through antimicrobial mechanism. 


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Manuel Gómez-García ◽  
Cinta Sol ◽  
Pedro J. G. de Nova ◽  
Mónica Puyalto ◽  
Luis Mesas ◽  
...  

Abstract Background Accurate screening of new alternative antimicrobial compounds is essential for their use to control pathogens in swine production due to the replacement of antibiotics and zinc oxide. Most in vitro studies have separately reported the antimicrobial activity of organic acids and essential oils (EOs) using diverse methods for susceptibility testing. In addition, in vitro outcomes can help in the selection of the suitable antimicrobial compound and effective combinations of these compounds in the control of pathogens of interest in pork production. Therefore, the aim of this study is to determinate the antibacterial activity of six organic acids and six EOs against Escherichia coli, Salmonella spp. and Clostridium perfringens isolates, some of them multi-resistant to antibiotics, from swine origin. The synergistic effects between the products with higher activity for each bacteria were also calculated. Results All products tested showed activity against at least one bacterial species, except for black pepper EO. The results showed that formic acid with the shortest chain length was the most effective against E. coli and Salmonella spp., while the sodium salt of coconut fatty acid distillates with long chain acids was the most effective against C. perfringens. The susceptibility of isolates tested to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens. In addition, an additive effect was shown for carvacrol-oregano EO for E. coli, formic acid-carvacrol and formic acid-thymol for Salmonella spp. and carvacrol-cinamaldehyde for C. perfringens. Conclusions The susceptibility of isolates to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens in contrast to organic acids. In addition, an additive effect was shown for several combinations of these compounds.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Sofiya N. Micheva-Viteva ◽  
Brittany N. Ross ◽  
Jun Gao ◽  
Samantha Adikari ◽  
Pengfei Zhang ◽  
...  

ABSTRACT Bacterial persistence, known as noninherited antibacterial resistance, is a factor contributing to the establishment of long-lasting chronic bacterial infections. In this study, we examined the ability of nicotinamide (NA) to potentiate the activity of different classes of antibiotics against Burkholderia thailandensis persister cells. Here we demonstrate that addition of NA in in vitro models of B. thailandensis infection resulted in a significant depletion of the persister population in response to various classes of antibiotics. We applied microfluidic bioreactors with a continuous medium flow to study the effect of supplementation with an NA gradient on the recovery of B. thailandensis persister populations. A coculture of human neutrophils preactivated with 50 µM NA and B. thailandensis resulted in the most efficient reduction in the persister population. Applying single-cell RNA fluorescence in situ hybridization analysis and quantitative PCR, we found that NA inhibited gene expression of the stringent response regulator relA, implicated in the regulation of the persister metabolic state. We also demonstrate that a therapeutic dose of NA (250 mg/kg of body weight), previously applied as immunoprophylaxis against antibiotic-resistant bacterial species, produced adverse effects in an in vivo murine model of infection with the highly pathogenic bacterium Burkholderia pseudomallei, indicating that therapeutic dose and metabolite effects have to be carefully evaluated and tailored for every case of potential clinical application.


2019 ◽  
Vol 221 (6) ◽  
pp. 983-988 ◽  
Author(s):  
Jameson K Gardner ◽  
Paweł Łaniewski ◽  
Anna Knight ◽  
Lisa B Haddad ◽  
Alison Swaims-Kohlmeier ◽  
...  

Abstract In recent studies, the interleukin (IL)-36 cytokines were shown to be elevated in women with non-Lactobacillus-dominated vaginal microbiomes. In this study, we evaluated IL36G expression in clinical samples from women with and without bacterial vaginosis (BV) and a human 3-dimensional cervical epithelial cell model. IL36G expression was significantly elevated in cervicovaginal epithelial cells isolated from BV-positive women and corresponded with increased neutrophil counts relative to BV-negative women. In addition, specific BV-associated bacterial species as well as a polymicrobial cocktail significantly induced IL36G expression in vitro. These findings suggest that IL-36γ may exhibit an important function in the host response to BV and other sexually transmitted infections.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Yan Q. Xiong ◽  
Angeles Estellés ◽  
L. Li ◽  
W. Abdelhady ◽  
R. Gonzales ◽  
...  

ABSTRACT Many serious bacterial infections are antibiotic refractory due to biofilm formation. A key structural component of biofilm is extracellular DNA, which is stabilized by bacterial proteins, including those from the DNABII family. TRL1068 is a high-affinity human monoclonal antibody against a DNABII epitope conserved across both Gram-positive and Gram-negative bacterial species. In the present study, the efficacy of TRL1068 for the disruption of biofilm was demonstrated in vitro in the absence of antibiotics by scanning electron microscopy. The in vivo efficacy of this antibody was investigated in a well-characterized catheter-induced aortic valve infective endocarditis model in rats infected with a methicillin-resistant Staphylococcus aureus (MRSA) strain with the ability to form thick biofilms, obtained from the blood of a patient with persistent clinical infection. Animals were treated with vancomycin alone or in combination with TRL1068. MRSA burdens in cardiac vegetations and within intracardiac catheters, kidneys, spleen, and liver showed significant reductions in the combination arm versus vancomycin alone (P < 0.001). A trend toward mortality reduction was also observed (P = 0.09). In parallel, the in vivo efficacy of TRL1068 against a multidrug-resistant clinical Acinetobacter baumannii isolate was explored by using an established mouse model of skin and soft tissue catheter-related biofilm infection. Catheter segments infected with A. baumannii were implanted subcutaneously into mice; animals were treated with imipenem alone or in combination with TRL1068. The combination showed a significant reduction of catheter-adherent bacteria versus the antibiotic alone (P < 0.001). TRL1068 shows excellent promise as an adjunct to standard-of-care antibiotics for a broad range of difficult-to-treat bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document