scholarly journals Characterisation of cefotaxime-resistant urinary Escherichia coli from primary care in South-West England 2017-2018

2019 ◽  
Author(s):  
Jacqueline Findlay ◽  
Virginia C. Gould ◽  
Paul North ◽  
Karen E. Bowker ◽  
O. Martin Williams ◽  
...  

AbstractObjectivesThird-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections (UTI) have been increasingly reported worldwide. In this study we sought to determine and characterise the mechanisms of cefotaxime-resistance (CTX-R) employed by urinary E. coli obtained from primary care over a 12-month period, in Bristol and surrounding counties in the South West of England.MethodsCephalexin resistant (Ceph-R) E. coli isolates were identified directly from general practice (GP) referred urine samples using disc susceptibility testing as per standard diagnostic procedures. CTX-R was determined by subsequent plating onto MIC breakpoint plates. β-Lactamase genes were detected by PCR. Whole Genome Sequencing (WGS) was performed on 225 urinary isolates and analyses were performed using the Centre for Genomic Epidemiology platform. Patient information provided by the referring GPs was reviewed.ResultsDuring the study period, Ceph-R E. coli (n=900) were obtained directly from urines from 146 GPs. Seventy-percent (626/900) of isolates were CTX-R. WGS of 225 non-duplicate isolates identified that the most common mechanism of CTX-R was blaCTX-M carriage (185/225; 82.2%), predominantly blaCTX-M-15 (114/185; 61.6%), followed by carriage of plasmid mediated AmpCs (pAmpCs) (17/225; 7.6%), ESBL blaSHV variants (6/225; 2.7%), AmpC hyperproduction (13/225; 5.8%), or a combination of both blaCTX-M and pAmpC carriage (4/225; 1.8%). Forty-four sequence types (STs) were identified with ST131 representing 101/225 (45.0%) of sequenced isolates, within which the blaCTX-M-15-positive clade C2 was dominant (54/101; 53.5%). Ciprofloxacin-resistance (CIP-R) was observed in 128/225 (56.9%) of sequenced CTX-R isolates – predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193.ConclusionsMost Ceph-R urinary E. colis were CTX-R, predominantly caused by blaCTX-M carriage. There was a clear correlation between CTX-R and CIP-R, largely attributable to the dominance of the high-risk pandemic clones, ST131 and ST1193 in this study. This localised epidemiological data provides greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.

2019 ◽  
Vol 75 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Jacqueline Findlay ◽  
Virginia C Gould ◽  
Paul North ◽  
Karen E Bowker ◽  
Martin O Williams ◽  
...  

Abstract Objectives Third-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections are increasingly reported worldwide. We sought to determine and characterize the mechanisms of cefotaxime resistance employed by urinary E. coli obtained from primary care, over 12 months, in Bristol and surrounding counties in South-West England. Methods Cefalexin-resistant E. coli isolates were identified from GP-referred urine samples using disc susceptibility testing. Cefotaxime resistance was determined by subsequent plating onto MIC breakpoint plates. β-Lactamase genes were detected by PCR. WGS was performed on 225 isolates and analyses were performed using the Center for Genomic Epidemiology platform. Patient information provided by the referring general practices was reviewed. Results Cefalexin-resistant E. coli (n=900) isolates were obtained from urines from 146 general practices. Following deduplication by patient approximately 69% (576/836) of isolates were cefotaxime resistant. WGS of 225 isolates identified that the most common cefotaxime-resistance mechanism was blaCTX-M carriage (185/225), followed by plasmid-mediated AmpCs (pAmpCs) (17/225), AmpC hyperproduction (13/225), ESBL blaSHV variants (6/225) or a combination of both blaCTX-M and pAmpC (4/225). Forty-four STs were identified, with ST131 representing 101/225 isolates, within which clade C2 was dominant (54/101). Ciprofloxacin resistance was observed in 128/225 (56.9%) of sequenced isolates, predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193. Conclusions Most cefalexin-resistant E. coli isolates were cefotaxime resistant, predominantly caused by blaCTX-M carriage. The correlation between cefotaxime resistance and ciprofloxacin resistance was largely attributable to the high-risk pandemic clones ST131 and ST1193. Localized epidemiological data provide greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.


2021 ◽  
Vol 12 (1) ◽  
pp. 123-137
Author(s):  
Carolina Sabença ◽  
Gilberto Igrejas ◽  
Patrícia Poeta ◽  
Frédéric Robin ◽  
Richard Bonnet ◽  
...  

Objectives. Epidemiological data concerning third-generation cephalosporin (3GC) resistance in wild fauna are scarce. The aim of this study was to characterize the resistance genes, their genetic context, and clonal relatedness in 17 Escherichia coli resistant to 3GC isolated from wild animals. Methods. The isolates were characterized by short-read whole genome sequencing, and long-read sequencing was used for the hybrid assembly of plasmid sequences. Results. The 3GC resistance gene most identified in the isolates was the extended-spectrum β-lactamases (ESBL)-encoding gene blaCTX-M-1 (82.3%), followed by blaCTX-M-32 (5.9%), blaCTX-M-14 (5.9%), and blaSHV-12 (5.9%). E. coli isolates mainly belonged to the sequence types (STs) rarely reported from humans. The single nucleotide polymorphism (SNP)-based typing showed that most E. coli genomes from wild animals (wild boars, birds of prey, and buzzards) formed clonal clusters (<5 SNPs), showing a clonal dissemination crossing species boundaries. blaCTX-M-1-harboring IncI1-ST3 plasmid was the predominant ESBL-encoding plasmid (76.4%) in wild animal isolates. Plasmid comparison revealed a 110-kb self-transferable plasmid consisting of a conserved backbone and two variable regions involved in antimicrobial resistance and in interaction with recipient cells during conjugation. Conclusion. Our results highlighted the unexpected clonal dissemination of blaCTX-M-1-encoding clones and the complicity of IncI1-ST3 plasmid in the spread of blaCTX-M-1 within wild fauna.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2014 ◽  
Vol 58 (12) ◽  
pp. 7102-7111 ◽  
Author(s):  
A. Tratselas ◽  
M. Simitsopoulou ◽  
A. Giannakopoulou ◽  
I. Dori ◽  
S. Saoulidis ◽  
...  

ABSTRACTUrinary tract infections (UTIs) due to extended-spectrum-β-lactamase (ESBL)-producingEnterobacteriaceaein children are becoming more frequent, and they are commonly treated initially with a second- or third-generation cephalosporin. We developed a murine model of ascending UTI caused by ESBL-producingEscherichia coli. Using this model, we investigated the renal bacterial burden, interleukin-6 (IL-6) expression, and histopathological alterations caused by ESBL- and non-ESBL-producing bacteria after 1, 2, or 6 days with or without ceftriaxone therapy. The renal bacterial burden, IL-6 concentration, and histological inflammatory lesions were not significantly different between mice infected with ESBL- and non-ESBL-producing bacteria without treatment at any of the time points examined. Following ceftriaxone administration, the bacterial burden was eliminated in the kidneys of mice infected with ESBL- and non-ESBL-producing bacteria on the 6th postinfection day. The histological analysis demonstrated that among mice treated with ceftriaxone, those infected with ESBL-producing bacteria had more profound renal alterations than those infected with non-ESBL-producing bacteria on the 6th day (P< 0.001). In comparison, microbiological outcomes did not differ significantly between mice infected with ESBL- and non-ESBL-producing bacteria at any of the time points examined. The effectiveness of ceftriaxone in mice with UTIs due to ESBL-producingE. colimay have therapeutic implications; it is, however, hampered by limited activity on the histopathological lesions, a finding that needs further investigation.


2019 ◽  
Author(s):  
Koen B Pouwels ◽  
Berit Muller-Pebody ◽  
Timo Smieszek ◽  
Susan Hopkins ◽  
Julie V Robotham

AbstractThe majority of studies that link antibiotic usage and resistance focus on simple associations between the resistance against a specific antibiotic and the use of that specific antibiotic. However, the relationship between antibiotic use and resistance is more complex. Here we evaluate which antibiotics, including those mainly prescribed for respiratory tract infections, are associated with increased resistance among Escherichia coli isolated from urinary samples.Monthly primary care prescribing data were obtained from National Health Service (NHS) Digital. Positive E. coli records from urine samples in English primary care (n=888,207) between April 2014 and January 2016 were obtained from the Second Generation Surveillance System. Elastic net regularization was used to evaluate associations between prescribing of different antibiotic groups and resistance against amoxicillin, cephalexin, ciprofloxacin, co-amoxiclav and nitrofurantoin at the clinical commissioning group (CCG) level. England is divided into 209 CCGs, with each NHS practice prolonging to one CCG.Amoxicillin prescribing (measured in DDD/ 1000 inhabitants / day) was positively associated with amoxicillin (RR 1.03, 95% CI 1.01 – 1.04) and ciprofloxacin (RR 1.09, 95% CI 1.04 – 1.17) resistance. In contrast, nitrofurantoin prescribing was associated with lower levels of resistance to amoxicillin (RR 0.92, 95% CI 0.84 – 0.97). CCGs with higher levels of trimethoprim prescribing also had higher levels of ciprofloxacin resistance (RR 1.34, 95% CI 1.10 – 1.59).Amoxicillin, which is mainly (and often unnecessarily) prescribed for respiratory tract infections is associated with increased resistance against various antibiotics among E. coli causing urinary tract infections. Our findings suggest that when predicting the potential impact of interventions on antibiotic resistances it is important to account for use of other antibiotics, including those typically used for other indications.Author summaryAntibiotic resistance is increasingly recognised as a threat to modern healthcare. Effective antibiotics are crucial for treatment of serious bacterial infections and are necessary to avoid that complicated surgical procedures and chemotherapy becoming life-threatening. Antibiotic use is one of the main drivers of antibiotic resistance. The majority of antibiotic prescriptions are prescribed in primary care, however, a large proportion of these antibiotic prescriptions are unnecessary. Understanding which antibiotics are causing antibiotic resistance to what extent is needed to prevent under- or over-investment in interventions lowering use of specific antibiotics, such as rapid diagnostic tests for respiratory tract infection.We have statistically evaluated which antibiotics are associated with higher and lower levels of antibiotic resistance against common antibiotics among Escherichia coli bacteria sampled from the urinary tract by comparing antibiotic prescribing and resistance in different geographical areas in England. Our model shows that amoxicillin, the most commonly used antibiotic in England and mainly used for respiratory tract infections, is associated with increased resistance against several other antibiotics among bacteria causing urinary tract infections. The methods used in this study, that overcome several of the limitations of previous studies, can be used to explore the complex relationships between antibiotic use and antibiotic resistance in other settings.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 467
Author(s):  
Dipak Kathayat ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
Gireesh Rajashekara

Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
E. L. Mejía-Argueta ◽  
J. G. Santillán-Benítez ◽  
M. M. Canales-Martinez ◽  
A. Mendoza-Medellín

Abstract Background To test the antimicrobial potential of clove essential oil that has been less investigated on antimicrobial-resistant organisms (extended-spectrum β-lactamase-ESBL-producing Escherichia coli), we collected 135 ESBL-producing Escherichia coli strains given that E. coli is the major organism increasingly isolated as a cause of complicated urinary and gastrointestinal tract infections, which remains an important cause of therapy failure with antibiotics for the medical sector. Then, in this study, we evaluated the relationship between the antibacterial potential activity of Syzygium aromaticum essential oil (EOSA) and the expression of antibiotic-resistant genes (SHV-2, TEM-20) in plasmidic DNA on ESBL-producing E. coli using RT-PCR technique. Results EOSA was obtained by hydrodistillation. Using Kirby-Baüer method, we found that EOSA presented a smaller media (mean = 15.59 mm) in comparison with chloramphenicol (mean = 17.73 mm). Thus, there were significant differences (p < 0.0001). Furthermore, EOSA had an antibacterial activity, particularly on ECB132 (MIC: 10.0 mg/mL and MBC: 80.0 mg/mL), and a bacteriostatic effect by bactericidal kinetic. We found that the expression of antibiotic-resistant gene blaTEM-20 was 23.52% (4/17 strains) and no expression of blaSHV-2. EOSA presented such as majority compounds (eugenol, caryophyllene) using the GC–MS technique. Conclusions Plant essential oils and their active ingredients have potentially high bioactivity against a different target (membranes, cytoplasm, genetic material). In this research, EOSA might become an important adjuvant against urinary and gastrointestinal diseases caused by ESBL-producing E. coli.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S821-S821
Author(s):  
Niyati H Shah ◽  
Brooke K Decker ◽  
Brooke K Decker ◽  
Gaetan Sgro ◽  
Monique Y Boudreaux-Kelly ◽  
...  

Abstract Background The IDSA recommends against screening for and treating ASB in all patients except for those pregnant or undergoing urologic procedures. Nevertheless, antibiotic treatment of ASB is widespread. We conducted a retrospective analysis of physician practices in diagnosis and management of Escherichia coli (E. coli) ASB in a male Veteran population, and compared outcomes in ASB patients treated or not treated with antibiotics. Methods Patients with an E. coli positive urine culture during an ED visit or inpatient admission from 01/2017 to 12/2017 were screened. Patients admitted to the intensive care unit or diagnosed with a sexually transmitted infection, pyelonephritis, prostatitis, or epididymitis/orchitis were excluded. A total of 163 patients were included. Demographics, clinical comorbidities and severity of illness, and outcomes were compared in ASB patients managed with or without antibiotics. ANOVA and Chi-square or Fisher’s exact tests were utilized for comparing measurements. Results ASB was present in 92/163 patients. The majority (74%) of these patients were given antibiotics. Regardless of qSOFA score or alternate infection, there were no significant differences in outcomes between ASB patients treated or not treated with antibiotics: 3-month mortality (15% vs 21%; p = 0.53), emergence of newly resistant bacterial pathogens (7% vs 13%; p = 0.43), recurrent urinary tract infections (61% vs 50%; p = 0.72), clearance of urinary pathogens (75% vs 58%; p = 0.45), length of hospital stay (7 vs 6 days, p = 0.67). Factors that were predictive of physician treatment of ASB included patient comorbid conditions such as benign prostatic hyperplasia, pyuria, and the absence of hematuria. The incidence of adverse events with antibiotic treatment of ASB was low. Conclusion The rate of antibiotic treatment of E. coli ASB in male veterans is high. Outcomes do not differ among ASB patients managed with or without antibiotics. Future studies examining outcomes in patients prescribed antibiotics for multiple episodes of ASB may yield differences, particularly in emergence of resistant pathogens. Focusing on patients with comorbid conditions who are not critically ill would be a high yield target for provider education to reduce ASB treatment. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mahoko Ikeda ◽  
Tatsuya Kobayashi ◽  
Fumie Fujimoto ◽  
Yuta Okada ◽  
Yoshimi Higurashi ◽  
...  

Abstract Background Although Escherichia coli is the most frequently isolated microorganism in acute biliary tract infections with bacteremia, data regarding its virulence are limited. Results Information on cases of bacteremia in acute biliary tract infection in a retrospective study was collected from 2013 to 2015 at a tertiary care hospital in Japan. Factors related to the severity of infection were investigated, including patient background, phylogenetic typing, and virulence factors of E. coli, such as adhesion, invasion, toxins, and iron acquisition. In total, 72 E. coli strains were identified in 71 cases, most of which primarily belonged to the B2 phylogroup (68.1%). The presence of the iutA gene (77.3% in the non-severe group, 46.4% in the severe group, P = 0.011) and the ibeA gene (9.1% in the non-severe group, and 35.7% in the severe group, P = 0.012) was significantly associated with the severity of infection. Among the patient characteristics, diabetes mellitus with organ involvement and alkaline phosphatase were different in the severe and non-severe groups. Conclusions We showed that bacteremic E. coli strains from acute biliary tract infections belonged to the virulent (B2) phylogroup. The prevalence of the iutA and ibeA genes between the two groups of bacteremia severity was significantly different.


Sign in / Sign up

Export Citation Format

Share Document