scholarly journals Design of Epitope Based Peptide Vaccine Against Pseudomonas Aeruginosa Fructose Bisphosphate Aldolase Protein using Immunoinformatics

2019 ◽  
Author(s):  
Mustafa Elhag ◽  
Ruaa Mohamed Alaagib ◽  
Nagla Mohamed Ahmed ◽  
Mustafa Abubaker ◽  
Esraa Musa Haroun ◽  
...  

AbstractPseudomonas aeruginosa is common pathogen that is responsible of serious illnesses hospital acquired infection as ventilator associated pneumonia and various sepsis syndrome. Also it is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistant mechanisms. generally affects the immuonocompromised but can also infect the immunocompetent as in hot tub folliculitis. There is no vaccine against it available till now. This study predicts an effective epitope-based vaccine against Fructose bisphosphate aladolase (FBA) of Pseudomonas aeruginosa using immunoinformatics tools. The sequences were obtained from NCBI and prediction tests took place to analyze possible epitopes for B and T cells. Three B cell epitopes passed the antigenicity, accessibility and hydrophilicity tests. Six MHC I epitopes were the most promising, while four from MHC II. Nineteen epitopes were shared between MHC I and II. For the population coverage, the epitopes covered 95.62% of the alleles worldwide excluding certain MHC II alleles. We recommend invivo and invitro studies to prove it’s effectiveness.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mustafa Elhag ◽  
Ruaa Mohamed Alaagib ◽  
Nagla Mohamed Ahmed ◽  
Mustafa Abubaker ◽  
Esraa Musa Haroun ◽  
...  

Pseudomonas aeruginosa is a common pathogen that is responsible for serious hospital-acquired infections, ventilator-associated pneumonia, and various sepsis syndromes. Also, it is a multidrug-resistant pathogen recognized for its ubiquity and its intrinsically advanced antibiotic-resistant mechanisms. It usually affects immunocompromised individuals but can also infect immunocompetent individuals. There is no vaccine against it available till now. This study predicts an effective epitope-based vaccine against fructose bisphosphate aldolase (FBA) of Pseudomonas aeruginosa using immunoinformatics tools. The protein sequences were obtained from NCBI, and prediction tests were undertaken to analyze possible epitopes for B and T cells. Three B cell epitopes passed the antigenicity, accessibility, and hydrophilicity tests. Six MHC I epitopes were found to be promising, while four MHC II epitopes were found promising from the result set. Nineteen epitopes were shared between MHC I and II results. For the population coverage, the epitopes covered 95.62% worldwide excluding certain MHC II alleles. We recommend in vivo and in vitro studies to prove its effectiveness.


2018 ◽  
Vol 12 ◽  
pp. 117793221880970 ◽  
Author(s):  
Arwa A Mohammed ◽  
Ayman MH ALnaby ◽  
Solima M Sabeel ◽  
Fagr M AbdElmarouf ◽  
Amina I Dirar ◽  
...  

Background: Mycetoma is a distinct body tissue destructive and neglected tropical disease. It is endemic in many tropical and subtropical countries. Mycetoma is caused by bacterial infections ( actinomycetoma) such as Streptomyces somaliensis and Nocardiae or true fungi ( eumycetoma) such as Madurella mycetomatis. To date, treatments fail to cure the infection and the available marketed drugs are expensive and toxic upon prolonged usage. Moreover, no vaccine was prepared yet against mycetoma. Aim: The aim of this study is to predict effective epitope-based vaccine against fructose-bisphosphate aldolase enzymes of M. mycetomatis using immunoinformatics approaches. Methods and materials: Fructose-bisphosphate aldolase of M. mycetomatis sequence was retrieved from NCBI. Different prediction tools were used to analyze the nominee’s epitopes in Immune Epitope Database for B-cell, T-cell MHC class II and class I. Then the proposed peptides were docked using Autodock 4.0 software program. Results and conclusions: The proposed and promising peptides KYLQ show a potent binding affinity to B-cell, FEYARKHAF with a very strong binding affinity to MHC I alleles and FFKEHGVPL that shows a very strong binding affinity to MHC II and MHC I alleles. This indicates a strong potential to formulate a new vaccine, especially with the peptide FFKEHGVPL which is likely to be the first proposed epitope-based vaccine against fructose-bisphosphate aldolase of M. mycetomatis. This study recommends an in vivo assessment for the most promising peptides especially FFKEHGVPL.


2021 ◽  
Author(s):  
Tran Hai Anh ◽  
Tran Huy Hoang ◽  
Vu Thi Ngoc Bich ◽  
Trinh Son Tung ◽  
Tran Dieu Linh ◽  
...  

Abstract Background: Multidrug-resistant bacteria including carbapenem resistant Pseudomonas aeruginosa are recognised as an important cause of hospital-acquired infections worldwide. To determine the molecular characterisation and antibiotic resistant genes associated with carbapenem-resistant P. aeruginosa. Methods: we conducted whole-genome sequencing and phylogenetic analysis of 72 carbapenem-resistant P. aeruginosa isolated from hospital-acquired infection patients from 2010 to 2015 in three major hospitals in Hanoi, Vietnam. Results: We identified three variants of IMP genes, among which IMP-15 gene was the most frequent (n= 34) in comparison to IMP-26 (n= 2) and IMP-51 (n=12). We observed two isolates with imipenem MIC >128mg/L that co-harboured IMP-15 and DIM-1 genes and seven isolates (imipenem MIC> 128mg/L) with KPC-1 gene from the same hospital. MLST data showed that sequence types (ST) of 72 isolates were classified into 18 STs and phylogenetic tree analysis divided these isolates into nine groups. Conclusion: Our results provide evidence that not only IMP-26, but other variants of IMPs like IMP-15 and IMP-51 genes and several STs (ST235, ST244, ST277, ST310, ST773 and ST3151) have been disseminated in health care settings in Vietnam. Also, we report the first finding in Vietnam that two isolates belonging to ST1240 and ST3340 harboured two important carbapenemase genes (IMP-15 and, DIM-1) and seven isolates belonging to ST3151 of P. aeruginosa carried the KPC-1 gene, which could be a potential cause of seriously restricted available treatment options in healthcare settings.


2021 ◽  
Author(s):  
Senjuti Saha ◽  
Chidozie D. Ojobor ◽  
Erik Mackinnon ◽  
Olesia I. North ◽  
Joseph Bondy-Denomy ◽  
...  

ABSTRACTMost Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or non-contractile phage tails known as R-type and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3’-end of the F-type pyocin cluster are divergent in sequence, and likely determine bactericidal specificity. We use sequence similarities among these proteins to define 11 distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly re-assorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins emerged earlier or have been subject to distinct evolutionary pressures. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as anti-bacterial therapeutics.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes a broad spectrum of antibiotic resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great interest in the development of alternative therapeutics. One alternative is protein-based antimicrobials called bacteriocins, which are produced by one strain of bacteria to kill other strains. In this study, we investigate F-type pyocins, bacteriocins naturally produced by P. aeruginosa that resemble non-contractile phage tails. We show that they are potent killers of P. aeruginosa, and distinct pyocin groups display different killing specificities. We have identified the probable specificity determinants of F-type pyocins, which opens up the potential to engineer them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well characterized phage tails will greatly facilitate their development into effective antibacterials.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S771-S772
Author(s):  
Sarah C J Jorgensen ◽  
Trang D Trinh ◽  
Evan J Zasowski ◽  
Sara Alosaimy ◽  
Abdalhamid M Lagnf ◽  
...  

Abstract Background Ceftazidime–avibactam (CZA) is a novel cephalosporin/β-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae (CRE) and multidrug-resistant (MDR) Pseudomonas aeruginosa (PA). Real-world experience with CZA for CRE infections is accumulating but data on its use for MDR PA infections remains limited. Methods Retrospective, multicenter cohort study describing the clinical characteristics and outcomes of patients treated with CZA (≥ 72 hours) for MDR PA infections between 2015 and 2018. Results Fifty-one patients were included. The median (IQR) age was 61 (43, 71) years. Most patients had MDR risk factors including recent hospitalization (74.5%), recent antimicrobial exposure (84.3%), and/or previous infection or colonization with an MDR pathogen (58.8%). The median Charlson Comorbidity score was 4 (2, 6) and the median APACHE II score was 20 (12, 29). Infections were predominantly (68.6%) hospital-acquired and 52.9% of patients were in the ICU at infection onset. The common sources were respiratory tract (60.8%), osteoarticular (11.8%) and skin and soft tissue (11.8%). Two patients had positive blood cultures. PA antibiotic susceptibilities were as follows: ceftazidime 52.6% (n = 51), CZA 92.0% (n = 25), ciprofloxacin 10% (n = 30), meropenem 19.6% (n = 46), piperacillin–tazobactam 30.4% (n = 4) and tobramycin 72.9% (n = 48). Most (60.8%) infections were polymicrobial including 15 (29.4) CRE co-infections. CZA was started 97 (50, 170) hours after culture collection and continued for 9 (7, 14) days. Only 8 patients (15.7%) received active antibiotic therapy before CZA. Combination CZA therapy was used 35.3%, most often an aminoglycoside (8/18, 44.4%). Clinical cure or improvement was achieved in 40 patients (78.4%), and 42 (82.4%) were discharged alive. Among patients with repeat cultures (n = 11), CZA resistance development was not detected. Three patients (5.9%) experienced infection recurrence within 30 days of completing therapy. Conclusion The use of CZA was associated with high rates of favorable outcomes in complex patients with MDR PA infections. Future studies evaluating long-term outcomes and comparative studies are needed to more precisely define the role of CZA for MDR PA infections. Disclosures All authors: No reported disclosures.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 885
Author(s):  
Soraya Herrera-Espejo ◽  
Tania Cebrero-Cangueiro ◽  
Gema Labrador-Herrera ◽  
Jerónimo Pachón ◽  
María Eugenia Pachón-Ibáñez ◽  
...  

Multidrug-resistant (MDR) Pseudomonas aeruginosa is a public health problem causing both community and hospital-acquired infections, and thus the development of new therapies for these infections is critical. The objective of this study was to analyze in vitro the activity of pentamidine as adjuvant in combinations to antibiotics against seven clinical P. aeruginosa strains. The Minimum Inhibitory Concentration (MIC) was determined following standard protocols, and the results were interpreted according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints; however, the gentamicin activity was interpreted according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. The bactericidal in vitro activity was studied at 1×MIC concentrations by time–kill curves, and also performed in three selected strains at 1/2×MIC of pentamidine. All studies were performed in triplicate. The pentamidine MIC range was 400–1600 μg/mL. Four of the strains were MDR, and the other three were resistant to two antibiotic families. The combinations of pentamidine at 1×MIC showed synergistic activity against all the tested strains, except for pentamidine plus colistin. Pentamidine plus imipenem and meropenem were the combinations that showed synergistic activity against the most strains. At 1/2×MIC, pentamidine plus antibiotics were synergistic with all three analyzed strains. In summary, pentamidine in combination with antibiotics showed in vitro synergy against multidrug-resistant P. aeruginosa clinical strains, which suggests its possible use as adjuvant to antibiotics for the therapy of infections from MDR P. aeruginosa.


2017 ◽  
Vol 66 (4) ◽  
pp. 427-431 ◽  
Author(s):  
Tomasz Bogiel ◽  
Aleksander Deptuła ◽  
Joanna Kwiecińska-Piróg ◽  
Małgorzata Prażyńska ◽  
Agnieszka Mikucka ◽  
...  

Pseudomonas aeruginosa rods are one of the most commonly isolated microorganisms from clinical specimens, usually responsible for nosocomial infections. Antibiotic-resistant P. aeruginosa strains may present reduced expression of virulence factors. This fact may be caused by appropriate genome management to adapt to changing conditions of the hospital environment. Virulence factors genes may be replaced by those crucial to survive, like antimicrobial resistance genes. The aim of this study was to evaluate, using PCR, the occurrence of exoenzyme S-coding gene (exoS) in two distinct groups of P. aeruginosa strains: 83 multidrug-sensitive (MDS) and 65 multidrug-resistant (MDR) isolates. ExoS gene was noted in 72 (48.7%) of the examined strains: 44 (53.0%) MDS and 28 (43.1%) MDR. The observed differences were not statistically significant (p = 0.1505). P. aeruginosa strains virulence is rather determined by the expression regulation of the possessed genes than the difference in genes frequency amongst strains with different antimicrobial susceptibility patterns.


2018 ◽  
Author(s):  
Arwa A. Mohammed ◽  
Ayman M. H. ALnaby ◽  
Solima M. Sabeel ◽  
Fagr M. AbdElmarouf ◽  
Amina I. Dirar ◽  
...  

AbstractBackgroundMycetoma is a distinct flesh eating and destructive neglected tropical disease. It is endemic in many tropical and subtropical countries. Mycetoma is caused by bacterial infections (actinomycetoma) such as Streptomyces somaliensis and Nocardiae or true fungi (eumycetoma) such as Madurella mycetomatis. Until date, treatments fail to cure the infection and the available marketed drugs are expensive and toxic upon prolonged usage. Moreover, no vaccine was prepared yet against mycetoma.The aimof this study is to predict effective epitope-based vaccine against fructose-bisphosphate aldolase enzymes of M. mycetomatis using immunoinformatics approaches.Methods and MaterialsFructose-bisphosphate aldolase ofMadurella mycetomatisSequence was retrieved from NCBI. Different prediction tools were used to analyze the nominee’s epitopes in Immune Epitope Database for B-cell, T-cell MHC class II & I. Then the proposed peptides were docked using Autodock 4.0 software program.Results and ConclusionsThe proposed and promising peptides KYLQ shows a potent binding affinity to B-cell, FEYARKHAF with a very strong binding affinity to MHC1 alleles and FFKEHGVPL that show a very strong binding affinity to MHC11and MHC1 alleles. This indicates a strong potential to formulate a new vaccine, especially with the peptide FFKEHGVPL which is likely to be the first proposed epitope-based vaccine against Fructose-bisphosphate aldolase of Madurella mycetomatis. This study recommends an in-vivo assessment for the most promising peptides especially FFKEHGVPL.


Author(s):  
Maria Muddassir ◽  
Sadaf Munir ◽  
Almas Raza ◽  
Adeel Iqbal ◽  
Muddassir Ahmed ◽  
...  

Background: Pseudomonas aeruginosa is a clinically important pathogenic microbe in hospitalized patients. It is a major cause of mortality and morbidity having a number of mechanisms that make it antibiotic resistant. Considering the dearth of antimicrobial drugs to treat infection with this pathogen, it has become a necessity to open up new arena for treatment with this organism. Recently, there has been an up rise in the number of multidrug resistant pathogenic strains of Pseudomonas aeruginosa. Objective: Isolation and identification of multidrug resistant Pseudomonas aeruginosa from wound specimens and to evaluate the antibiotic resistant strains of this microbe. Methodology: One hundred and fifty clinical samples of wound were taken from hospitalized patients at Jinnah hospital Lahore during the period of October 2019 to April 2020. In total, twenty (20) isolates of Pseudomonas aeruginosa were identified using the cultural features, morphological characteristics and various biochemical tests plus the Vitek 2 system. Blue/green, brown /blue and yellow/green pigment production showed the presence and growth of Pseudomonas aeruginosa. Results: Percentage of Pseudomonas aeruginosa in females came out to be 15% as compared to 11.42% in males. This was followed by testing susceptibility of isolates of Pseudomonas aeruginosa to various antimicrobial drugs. Piperacillin/tazobactam and meropenem showed the highest efficacy against Pseudomonas aeruginosa. Highest resistance was exhibited against trimethoprim/sulfamethoxazole which was 75%. Conclusion: Most isolates showed multidrug resistance to four or more drugs. Development of multidrug resistance has emerged as a global problem with pathogens commonly causing infections becoming increasingly resistant to antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document