scholarly journals A Study of Isolation and Identification of Multidrug Resistant Pseudomonas aeruginosa from Wound Specimen

Author(s):  
Maria Muddassir ◽  
Sadaf Munir ◽  
Almas Raza ◽  
Adeel Iqbal ◽  
Muddassir Ahmed ◽  
...  

Background: Pseudomonas aeruginosa is a clinically important pathogenic microbe in hospitalized patients. It is a major cause of mortality and morbidity having a number of mechanisms that make it antibiotic resistant. Considering the dearth of antimicrobial drugs to treat infection with this pathogen, it has become a necessity to open up new arena for treatment with this organism. Recently, there has been an up rise in the number of multidrug resistant pathogenic strains of Pseudomonas aeruginosa. Objective: Isolation and identification of multidrug resistant Pseudomonas aeruginosa from wound specimens and to evaluate the antibiotic resistant strains of this microbe. Methodology: One hundred and fifty clinical samples of wound were taken from hospitalized patients at Jinnah hospital Lahore during the period of October 2019 to April 2020. In total, twenty (20) isolates of Pseudomonas aeruginosa were identified using the cultural features, morphological characteristics and various biochemical tests plus the Vitek 2 system. Blue/green, brown /blue and yellow/green pigment production showed the presence and growth of Pseudomonas aeruginosa. Results: Percentage of Pseudomonas aeruginosa in females came out to be 15% as compared to 11.42% in males. This was followed by testing susceptibility of isolates of Pseudomonas aeruginosa to various antimicrobial drugs. Piperacillin/tazobactam and meropenem showed the highest efficacy against Pseudomonas aeruginosa. Highest resistance was exhibited against trimethoprim/sulfamethoxazole which was 75%. Conclusion: Most isolates showed multidrug resistance to four or more drugs. Development of multidrug resistance has emerged as a global problem with pathogens commonly causing infections becoming increasingly resistant to antimicrobial agents.

1996 ◽  
Vol 40 (9) ◽  
pp. 2021-2028 ◽  
Author(s):  
K Poole ◽  
K Tetro ◽  
Q Zhao ◽  
S Neshat ◽  
D E Heinrichs ◽  
...  

The region upstream of the multiple antibiotic resistance efflux operon mexA-mexB-oprM in Pseudomonas aeruginosa was sequenced, and a gene, mexR, was identified. The predicted MexR product contains 147 amino acids with a molecular mass of 16,964 Da, which is consistent with the observed size of the overexpressed mexR gene product. MexR was homologous to MarR, the repressor of MarA-dependent multidrug resistance in Escherichia coli, and other repressors of the MarR family. A mexR knockout mutant showed a twofold increase in expression of both plasmid-borne and chromosomal mexA-reporter gene fusions compared with the MexR+ parent strain, indicating that the mexR gene product negatively regulates expression of the mexA-mexB-oprM operon. Furthermore, the cloned mexR gene product reduced expression of a plasmid-borne mexA-lacZ fusion in E. coli, indicating that MexR represses mexA-mexB-oprM expression directly. Consistent with the increased expression of the efflux operon in the mexR mutant, the mutant showed an increase (relative to its MexR+ parent) in resistance to several antimicrobial agents. Expression of a mexR-lacZ fusion increased threefold in a mexR knockout mutant, indicating that mexR is negatively autoregulated. OCR1, a nalB multidrug-resistant mutant which overproduces OprM, exhibited a greater than sevenfold increase in expression of a chromosomal mexA-phoA fusion compared with its parent. Introduction of a mexR knockout mutation in strain OCR1 eliminated this increase in efflux gene expression and, as expected, increased the susceptibility of the strain to a variety of antibiotics. The nucleotide sequences of the mexR genes of OCR1 and its parental strain revealed a single base substitution in the former which would cause a predicted substitution of Trp for Arg at position 69 of its mexR product. These data suggest that MexR possesses both repressor and activator function in vivo, the activator form being favored in nalB multidrug-resistant strains.


2021 ◽  
Vol 12 (4) ◽  
pp. 15-25
Author(s):  
D. P. Gladin ◽  
A. R. Khairullina ◽  
A. M. Korolyuk ◽  
N. S. Kozlova ◽  
O. V. Ananyeva ◽  
...  

Background. Staphylocci are the leading pus-forming Gram-positive bacteria in the childrens hospitals. The prevalence of the antibiotic resistant strains among them limits therapeutic effects of infections in children. Aim. The research is aimed at characterizing the species of staphylococcus, which are isolated from the different clinical specimens of the patients at the clinics of Saint Petersburg State Pediatric Medical University in 2019, and analysis of their susceptibility to antimicrobial agents. Materials and metods. According to the clinical recommendations of 2018, susceptibility to antimicrobial drugs (AMD) was revealed in 860 strains of staphylococci determined by the disc diffusion method, which were identified by the automated analyser Vitek-2 compact. Results. Six species of staphylococci were represented at the hospital departments, among which Staphylococcus epidermidis prevailed in the departments of the neonate pathology department and intensive care units (63.0% and 46.2% respectively), Staphylococcus aureus is commonly found at the departments of surgery and the departments of the therapeutic profiles (61.7% and 46.2% respectively). More than a half of the staphylococci strains (63.0%) were resistant to at least one of the antimicrobial drugs. Vancomycin and line solid showed the highest activity to these staphylococci. High specific weight of multidrug resistant (MDR) bacteria (37.8%) and extensively drug resistant (XDR) strains of the phenotype (33.0%) was revealed. The level of antibiotic resistant strains was the highest in Staphylococcus haemolyticus (98.1%) and S. epidermidis (82.0%), while the specific weight of the resistant ones, MDR and XDR strains was extremely low among S. aureus (16.2%, 1.5% and 0.4 respectively), as well as in methicillin-resistant isolates (0.8%). Conclusions. A great variety of antibiotic resistance was revealed among the staphylococci. The prevalence of these strains in the pediatric hospitals requires constant local monitoring of the antibiotic resistant staphylococci.


2020 ◽  
Vol 10 (03) ◽  
pp. 337-343
Author(s):  
Anwer J. Faisal ◽  
Munim Radwan Ali ◽  
Layla Abdulhamid Said

Pseudomonas aeruginosa can regulate different group actives and physiological processes through the quorum sensing mechanism. The aims of this research were to detect the presence of quorum sensing genes in 50 clinical P. aeruginosa isolates, which represent by (lasI, lasR, rhlI, and rhlR) and Pseudomonas quinolone signal (PQS) (PgsA, PgsB, PgsC, PgsD, PgsE, and MvfR) genes by Polymerase chain reaction (PCR) technique and interaction between the two systems. Isolates were subjected to test their susceptibility to 12 antimicrobial drugs, 64% of isolates showed resistance to ceftazidime, followed by carbencillin (56%), while only 8% were resistant to imipenem. In addition, all of the bacterial isolates were distributed within three multidrug-resistant (MDR) patterns, viz., A, B, and C. The highest rate of MDR was showed with MDR pattern C, in which bacterial isolates showed resistance to resist (9→11) antimicrobial drugs. Results revealed that P. aeruginosa isolates have different gene patterns, viz., A to E. According to quorum sensing genes production, pattern A found to express all the genes in LasI, RhI, and PQS system, while pattern B has a defective for the production of lasR, rhlR genes, while the same isolates have the PQS system all present. Significantly, there is a positive relationship between las and rhl system and regulation of antibiotics resistance, in which the bacterial isolates that have las and rhl genes showed high resistance to common antimicrobial agents under study. These findings suggest that PQS can function as an intercellular signal in P. aeruginosa that is not restricted only to alkyl homoserine lactones (AHL).


Author(s):  
Amit Karmakar ◽  
Parimal Dua ◽  
Chandradipa Ghosh

Staphylococcus aureusis opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 100Staphylococcus aureusisolates were obtained from clinical samples derived from hospitalized patients. The presumptiveStaphylococcus aureusclinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species specific 16S rRNA primer pairs and finally 100 isolates were found to be positive asStaphylococcus aureus. Screened isolates were further analyzed by several microbiological diagnostics tests including gelatin hydrolysis, protease, and lipase tests. It was found that 78%, 81%, and 51% isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolatedStaphylococcus aureusstrains with respect to different antimicrobial agents revealed resistance pattern ranging from 57 to 96%. Our study also shows 70% strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection ofmecA,nuc, andhlbgenes and 70%, 84%, and 40% were found to harbourmecA,nuc, andhlbgenes, respectively. The current investigation is highly important and informative for the high level multidrug resistantStaphylococcus aureusinfections inclusive also of methicillin and vancomycin.


2021 ◽  
pp. 004947552110609
Author(s):  
Joaquim Ruiz ◽  
Wilfredo Flores-Paredes ◽  
Nestor Luque ◽  
Roger Albornoz ◽  
Nayade Rojas ◽  
...  

This study retrospectively analysed the emergence of multidrug-resistant Salmonella enterica in a level IV hospital in Lima, Peru. A total of 64 S. enterica from January 2009 to June 2010 (Period 1, 24 isolates) and January 2012 to December 2014 (Period 2, 40 isolates) were included. Some 25 were from non-hospitalized and 39 from hospitalized patients. Antimicrobial susceptibility to 15 antimicrobial agents was established by automated methods. Most of the isolates were from blood (46.9%), urine (21.9%) and faeces (14.1%). There was a reduction in blood isolates in Period 2, while all the faecal isolates were from this period. In Period 1, only 3/24 (12.5%) isolates showed antibiotic resistance, whereas 25/39 isolates (64.1%) from Period 2 were antibiotic-resistant, with multidrug-resistant and extensively drug-resistant rates of 17.9% and 20.5%, respectively. Multidrug-resistant/extensively drug-resistant Salmonella isolates were introduced in the hospital in 2013, with Salmonella recovered from faeces from non-hospitalized patients suggested an increase in community-acquired multidrug-resistant/extensively drug-resistant Salmonella infections.


2021 ◽  
pp. 2197-2205
Author(s):  
Heba Badr ◽  
Nehal M. Nabil ◽  
Maram M. Tawakol

Background and Aim: Increased multidrug resistance in Escherichia coli has created challenges for the poultry industry. Consequently, new antimicrobial agents should preferentially be utilized for the prevention and treatment of E. coli outbreaks. This study aimed to evaluate the effects of lactoferrin (LF) as a prebiotic on broiler chicks challenged with multidrug-resistant E. coli in comparison with antibiotics. Materials and Methods: A total of 70 diseased flocks from Egypt were collected for E. coli isolation and identification, serotyping, and antimicrobial susceptibility pattern determination. E. coli was isolated and characterized phenotypically and one isolate that showed multidrug-resistance was selected. A challenge trial was performed to evaluate the effectiveness of LF as a prebiotic on the isolated multidrug-resistant E. coli. Liver samples were collected from the experimental chicks and subjected to E. coli enumeration to illustrate the effectiveness of LF on the liver cells and bacteria using an electron microscope. Serum samples were also collected to estimate lysozyme and nitric oxide (NO) concentrations. Results: After isolation of E. coli with a percentage of 54.3% from the diseased broilers, the strain was serotyped (identified serotypes: O2, O18, O55, O78, O86a, O111, O125, O126, O127, O157, O159, and O166). Multi-antibiotic resistance was found to be harbored in a high percentage among 11 antibiotic discs. The LF in the prophylactic and treated groups was found to have a significant effect in comparison with the group treated with the drug of choice (ciprofloxacin). Furthermore, a significant difference in the NO (one of non-specific immune response) and a non-significant difference in lysozyme concentrations were reported in the group fed on rations with LF in comparison with the non-fed group. Conclusion: LF was thus identified as an effective prebiotic that can improve chick performance, help them to overcome multidrug-resistant E. coli and stimulate immunity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed O. El-Gendy ◽  
Dag A. Brede ◽  
Tamer M. Essam ◽  
Magdy A. Amin ◽  
Shaban H. Ahmed ◽  
...  

AbstractNosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13β) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13β were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13β was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13β represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.


Author(s):  
George G. Zhanel ◽  
Michael A. Zhanel ◽  
James A. Karlowsky

Fosfomycin is a bactericidal agent that inhibits cell wall synthesis using a mechanism of action distinct from β-lactams or other antimicrobial agents. It is a broad-spectrum agent that is frequently active against antimicrobial-resistant bacterial pathogens including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multidrug-resistant (MDR) Enterobacteriaceae, and some isolates of MDR Pseudomonas aeruginosa. Intravenous fosfomycin has been prescribed for a wide variety of infections in many countries for >40 years. It is most frequently used in combination with other antimicrobial agents (e.g., β-lactams, carbapenems, and aminoglycosides) and has an excellent safety profile, including in neonates and children, even with long-term administration (weeks). Fosfomycin achieves extensive tissue distribution including difficult to reach compartments such as aqueous humor, vitreous humor, abscess fluid, and CSF. Available data, to date, suggest no clinically relevant pharmacological interactions between fosfomycin and other agents, including drugs, stimulants, or food. Intravenous fosfomycin’s role in therapy in Canada is likely as an agent used alone or in combination for complicated urinary tract infections in hospitalized patients as well as hospitalized patients with MDR infections who have not responded to first-, and potentially, second-line antimicrobials or in patients who cannot tolerate (due to adverse effects) first- and second-line antimicrobials.


Author(s):  
Huda Zaid Al-Shami ◽  
Muhamed Ahmed Al-Haimi ◽  
Omar Ahmed Esma’il Al-dossary ◽  
Abeer Abdulmahmood Mohamed Nasher ◽  
Mohammed Mohammed Ali Al-Najhi ◽  
...  

Background and objectives: At the present time, antimicrobial resistance (AMR) is a major public health hazard, with antimicrobial resistance bacteria increasing exponentially. This study estimates the epidemiological profiles and antimicrobial resistance of Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB)  isolated from clinical samples among patients admitted to two University hospitals in Sana'a city for one year (2019). Methods: This was a retrospective study of clinical samples of patients collected from January 1, 2019 to December 30, 2019. All samples were appraised to determine presence of infectious agents using standard methods for isolation and identification of bacteria and yeasts from clinical samples of patients admitted to Al-Gumhouri University Hospital and Al-Kuwait University Hospital in Sana'a city. Antibiotic resistance was done using Kirby-Bauer disc diffusion methods. Results:  2,931 different pathogenic bacteria were detected from 24,690 different clinical specimens. The samples had an overall detection rate of 11.9% (2931/24,690). Among the bacterial pathogens isolated from clinical samples, 52.4% (n=1536) had GPB and 41.2% (n=1207) had GNB. The predominant GNB isolates were E.coli (22.04%), Klebsiella spp (6.03%), Pseudomonas aeruginosa (7.1%), Acinetobacter baumannii (1.46%), Enterobacter spp. (1.09%), Citrobacter spp. (1.16%), respectively. Among the GPB, S.aureus was the most common (26.3%), Coagulase-negative Staphylococcus (8.1%), Non-hemolytic Streptococcus (9.1%), Other alpha-hemolytic Streptococcus (3.9%), Streptococcus pyogenes (1.9%), and Streptococcus pneumoniae (0.5% ). A high rate of antibiotic resistance was recorded for sulfamethoxazole/trimethoprim (85.5%), ceftazidime (81.07%), ampicillin (70.4%), cefuroxime (66.4%). Conclusions:  The current study results revealed that the rate of resistance between GNB and GPB is associated with the incidence of different infections in patients attending two major tertiary hospitals in Sana'a city is very high. These results indicate ongoing screening and follow-up programs to detect antibiotic resistance, and also suggest the development of antimicrobial stewardship programs in Sana'a, Yemen.                     Peer Review History: Received: 9 September 2021; Revised: 11 October; Accepted: 23 October, Available online: 15 November 2021 Academic Editor:  Dr. A.A. Mgbahurike, University of Port Harcourt, Nigeria, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.0/10 Average Peer review marks at publication stage: 7.5/10 Reviewers: Rima Benatoui, Laboratory of Applied Neuroendocrinology, Department of Biology, Faculty of Science, Badji Mokhtar University Annaba, BP12 E L Hadjar–Algeria, [email protected] Dr. Wadhah Hassan Ali Edrees, Hajja University, Yemen, [email protected] Rola Jadallah, Arab American University, Palestine, [email protected] Similar Articles: PREVALENCE OF PSEUDOMONAS AERUGINOSA (P. AERUGINOSA) AND ANTIMICROBIAL SUSCEPTIBILITY PATTERNS AT A PRIVATE HOSPITAL IN SANA'A, YEMEN EVALUATION OF ANTIBACTERIAL RESISTANCE OF BIOFILM FORMS OF AVIAN SALMONELLA GALLINARUM TO FLUOROQUINOLONES


Sign in / Sign up

Export Citation Format

Share Document