scholarly journals Schizophrenia is characterized by age- and sex-specific effects on epigenetic aging

2019 ◽  
Author(s):  
Anil P.S. Ori ◽  
Loes M. Olde Loohuis ◽  
Jerry Guintivano ◽  
Eilis Hannon ◽  
Emma Dempster ◽  
...  

AbstractSchizophrenia (SCZ) is a severe mental illness that is associated with an increased prevalence of age-related disability and morbidity compared to the general population. An accelerated aging process has therefore been hypothesized as a component of the SCZ disease trajectory. Here, we investigated differential aging using three DNA methylation (DNAm) clocks (i.e. Hannum, Horvath, Levine) in a multi-cohort SCZ whole blood sample consisting of 1,100 SCZ cases and 1,200 controls. It is known that all three DNAm clocks are highly predictive of chronological age and capture different features of biological aging. We found that blood-based DNAm aging is significantly altered in SCZ with age- and sexspecific effects that differ between clocks and map to distinct chronological age windows. Most notably, the predicted phenotypic age (Levine clock) in female cases, starting at age 36 and beyond, is 3.21 years older compared to matching control subjects (95% CI: 1.92-4.50, P=1.3e-06) explaining 7.7% of the variance in disease status. Female cases with high SCZ polygenic risk scores present the highest age acceleration in this age group with +7.03 years (95% CI: 3.87-10.18, P=1.7E-05). Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings suggests that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. These results provide new biological insights into the aging landscape of SCZ with age- and sexspecific effects and warrant further investigations into the potential of DNAm clocks as clinical biomarkers that may help with disease management in schizophrenia.

Author(s):  
Chia-Ling Kuo ◽  
Luke C. Pilling ◽  
Janice L Atkins ◽  
Jane AH Masoli ◽  
João Delgado ◽  
...  

AbstractWith no known treatments or vaccine, COVID-19 presents a major threat, particularly to older adults, who account for the majority of severe illness and deaths. The age-related susceptibility is partly explained by increased comorbidities including dementia and type II diabetes [1]. While it is unclear why these diseases predispose risk, we hypothesize that increased biological age, rather than chronological age, may be driving disease-related trends in COVID-19 severity with age. To test this hypothesis, we applied our previously validated biological age measure (PhenoAge) [2] composed of chronological age and nine clinical chemistry biomarkers to data of 347,751 participants from a large community cohort in the United Kingdom (UK Biobank), recruited between 2006 and 2010. Other data included disease diagnoses (to 2017), mortality data (to 2020), and the UK national COVID-19 test results (to May 31, 2020) [3]. Accelerated aging 10-14 years prior to the start of the COVID-19 pandemic was associated with test positivity (OR=1.15 per 5-year acceleration, 95% CI: 1.08 to 1.21, p=3.2×10−6) and all-cause mortality with test-confirmed COVID-19 (OR=1.25, per 5-year acceleration, 95% CI: 1.09 to 1.44, p=0.002) after adjustment for demographics including current chronological age and pre-existing diseases or conditions. The corresponding areas under the curves were 0.669 and 0.803, respectively. Biological aging, as captured by PhenoAge, is a better predictor of COVID-19 severity than chronological age, and may inform risk stratification initiatives, while also elucidating possible underlying mechanisms, particularly those related to inflammaging.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 1056-1057
Author(s):  
Raghav Sehgal ◽  
Morgan Levine

Abstract A diverse array of aging clocks, derived from a variety of omics data and clinical biomarkers, have been developed to describe aging and predict age-related disease. As such, these biomarkers are particularly applicable for use in observational studies, basic science and clinical trials focused on tackling biological aging. However, ongoing research suggests significant heterogeneity in aging, with deterioration and disease occurring in different organ systems or functional domains at various rates across individuals. Existing aging clocks only measure heterogeneity in the degree of aging, not in the manner of aging (e.g. different organ systems or functional domains). We hypothesize these unique trajectories exist and that they can be captured using a systems based approach. In our work, using clinical chemistry biomarkers from participants in the Health and Retirement Study (HRS), Framingham Heart study (FHS) and Women’s Health Initiative (WHI) , we modeled unique epigenetic aging trajectories from distinct groups of biological processes (such as Immune function, metabolic function, hepatic function, cardiac function, renal function and more). Interestingly, these biological system specific scores when combined gave an aging clock with superior mortality prediction than any published aging clock. We further validate the system aging scores and aging clock in different clinical studies to show the added advantage of such a measure, such as the fact that people with similar epigenetic age may have very different system scores. Overall, this method introduces the potential for quantitative and multi-dimensional, personalized aging scores that are indicative of an individual’s disease and disorder risk.


2020 ◽  
Author(s):  
Jalmar Teeuw ◽  
Anil PS Ori ◽  
Rachel M Brouwer ◽  
Sonja MC de Zwarte ◽  
Hugo G Schnack ◽  
...  

Schizophrenia patients show signs of accelerated aging in cognitive and physiological domains. Both schizophrenia and accelerated aging, as measured by MRI brain images and epigenetic clocks, are correlated with increased mortality. However, the association between these aging measures have not yet been studied in schizophrenia patients. In schizophrenia patients and healthy subjects, accelerated aging was assessed in brain tissue using a longitudinal MRI (N=715 scans; mean scan interval 3.4 year) and in blood using two epigenetic age clocks (N=172). Differences ('gaps') between estimated ages and chronological ages were calculated, as well as the acceleration rate of brain aging. The correlations between these aging measures as well as with polygenic risk scores for schizophrenia (PRS; N=394) were investigated. Brain aging and epigenetic aging were not significantly correlated. Polygenic risk for schizophrenia was significantly correlated with brain age gap, brain age acceleration rate, and negatively correlated with DNAmAge gap, but not with PhenoAge gap. However, after controlling for disease status and multiple comparisons correction, these effects were no longer significant. Our results imply that the (accelerated) aging observed in the brain and blood reflect distinct biological processes. Our findings will require replication in a larger cohort.


2020 ◽  
Author(s):  
Lacey W. Heinsberg ◽  
Mitali Ray ◽  
Yvette P. Conley ◽  
James M. Roberts ◽  
Arun Jeyabalan ◽  
...  

ABSTRACTBackgroundPreeclampsia is a leading cause of maternal and neonatal morbidity and mortality. Chronological age and race are associated with increased risk of preeclampsia; however, the pathophysiology of preeclampsia and how these risk factors impact its development, are not entirely understood. This gap precludes clinical interventions to prevent preeclampsia occurrence or to address stark racial disparities in maternal and neonatal outcomes. Of note, cellular aging rates can differ between individuals and chronological age is often a poor surrogate of biological age. DNA methylation age provides a marker of biological aging, and those with a DNA methylation age greater than their chronological age have ‘age acceleration’. Examining age acceleration in the context of preeclampsia status, and race, could strengthen our understanding of preeclampsia pathophysiology, inform future interventions to improve maternal/neonatal outcomes, and provide insight to racial disparities across pregnancy.ObjectivesThe purpose of this exploratory study was to examine associations between age acceleration, preeclampsia status, and race across pregnancy.Study designThis was a longitudinal, observational, case-control study of 56 pregnant individuals who developed preeclampsia (n=28) or were normotensive controls (n=28). Peripheral blood samples were collected at trimester-specific time points and genome-wide DNA methylation data were generated using the Infinium MethylationEPIC Beadchip. DNA methylation age was estimated using the Elastic Net ‘Improved Precision’ clock and age acceleration was computed as Δage, the difference between DNA methylation age and chronological age. DNA methylation age was compared with chronological age using scatterplots and Pearson correlations, while considering preeclampsia status and race. The relationships between preeclampsia status, race, and Δage were formally tested using multiple linear regression, while adjusting for pre-pregnancy body mass index, chronological age, and (chronological age)2. Regressions were performed both with and without consideration of cell-type heterogeneity.ResultsWe observed strong correlations between chronological age and DNA methylation age in all trimesters, ranging from R=0.91-0.95 in cases and R=0.86-0.90 in controls. We observed significantly stronger correlations between chronological age and DNA methylation age in White versus Black participants ranging from R=0.89-0.98 in White participants and R=0.77-0.83 in Black participants. We observed no association between Δage and preeclampsia status within trimesters. However, even while controlling for covariates, Δage was higher in trimester 1 in participants with higher pre-pregnancy BMI (β=0.12, 95% CI=0.02 to 0.22, p=0.02) and lower in Black participants relative to White participants in trimesters 2 (β=−2.68, 95% CI=−4.43 to −0.94, p=0.003) and 3 (β=−2.10, 95% CI=−4.03 to −0.17, p=0.03). When controlling for cell-type heterogeneity, the observations with BMI in trimester 1 and race in trimester 2 persisted.ConclusionsWe report no association between Δage and preeclampsia status, although there were associations with pre-pregnancy BMI and race. In particular, our findings in a small sample demonstrate the need for additional studies to not only investigate the complex pathophysiology of preeclampsia, but also the relationship between race and biological aging, which could provide further insight into racial disparities in pregnancy and birth. Future efforts to confirm these findings in larger samples, including exploration and applications of other epigenetic clocks, is needed.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S479-S479
Author(s):  
Waylon J Hastings ◽  
Daniel Belsky ◽  
Idan Shalev

Abstract Biological processes of aging are thought to be modifiable causes of many chronic diseases. Measures of biological aging could provide sensitive endpoints for studies of risk factors hypothesized to shorten healthy lifespan and/or interventions that extend it. However, uncertainty remains about how to measure biological aging and if proposed measures assess the same thing. We tested four proposed measures of biological aging with available data from NHANES 1999-2002: Klemera-Doubal method (KDM) Biological Age, homeostatic dysregulation, Levine Method (LM) Biological Age, and leukocyte telomere length. All measures of biological aging were correlated with chronological age. KDM Biological Age, homeostatic dysregulation, and LM Biological Age were all significantly associated with each other, but were each not associated with telomere length. NHANES participants with older biological ages performed worse on tests of physical, cognitive, perceptual, and subjective functions known to decline with advancing chronological age and thought to mediate age-related disability. Further, NHANES participants with higher levels of exposure to life-course risk factors were measured as having older biological ages. In both sets of analyses, effect-sizes tended to be larger for KDM Biological Age, homeostatic dysregulation, and LM Biological Age as compared to telomere length. Composite measures combining cellular- and patient-level information tended to have the largest effect-sizes. The cellular-level aging biomarker telomere length may measure different aspects of the aging process relative to the patient-level physiological measures. Studies aiming to test if risk factors accelerate aging or if interventions may slow aging should not treat proposed measures of biological aging as interchangeable.


Author(s):  
Cathal McCrory ◽  
Giovanni Fiorito ◽  
Sinead McLoughlin ◽  
Silvia Polidoro ◽  
Cliona Ni Cheallaigh ◽  
...  

Abstract Allostatic load (AL) and epigenetic clocks both attempt to characterize the accelerated aging of biological systems, but at present it is unclear whether these measures are complementary or distinct. This study examines the cross-sectional association of AL with epigenetic age acceleration (EAA) in a subsample of 490 community-dwelling older adults participating in The Irish Longitudinal study on Aging (TILDA). A battery of 14 biomarkers representing the activity of four different physiological systems: immunological, cardiovascular, metabolic, renal, was used to construct the AL score. DNA methylation age was computed according to the algorithms described by Horvath, Hannum, and Levine allowing for estimation of whether an individual is experiencing accelerated or decelerated aging. Horvath, Hannum, and Levine EAA correlated 0.05, 0.03, and 0.21 with AL, respectively. Disaggregation by sex revealed that AL was more strongly associated with EAA in men compared with women as assessed using Horvath’s clock. Metabolic dysregulation was a strong driver of EAA in men as assessed using Horvath and Levine’s clock, while metabolic and cardiovascular dysregulation were associated with EAA in women using Levine’s clock. Results indicate that AL and the epigenetic clocks are measuring different age-related variance and implicate sex-specific drivers of biological aging.


Author(s):  
Pavanello ◽  
Campisi ◽  
Tona ◽  
Lin ◽  
Iliceto

DNA methylation (DNAm) is an emerging estimator of biological aging, i.e., the often-defined “epigenetic clock”, with a unique accuracy for chronological age estimation (DNAmAge). In this pilot longitudinal study, we examine the hypothesis that intensive relaxing training of 60 days in patients after myocardial infarction and in healthy subjects may influence leucocyte DNAmAge by turning back the epigenetic clock. Moreover, we compare DNAmAge with another mechanism of biological age, leucocyte telomere length (LTL) and telomerase. DNAmAge is reduced after training in healthy subjects (p = 0.053), but not in patients. LTL is preserved after intervention in healthy subjects, while it continues to decrease in patients (p = 0.051). The conventional negative correlation between LTL and chronological age becomes positive after training in both patients (p < 0.01) and healthy subjects (p < 0.05). In our subjects, DNAmAge is not associated with LTL. Our findings would suggest that intensive relaxing practices influence different aging molecular mechanisms, i.e., DNAmAge and LTL, with a rejuvenating effect. Our study reveals that DNAmAge may represent an accurate tool to measure the effectiveness of lifestyle-based interventions in the prevention of age-related diseases.


Author(s):  
Line Jee Hartmann Rasmussen ◽  
Avshalom Caspi ◽  
Antony Ambler ◽  
Andrea Danese ◽  
Maxwell Elliott ◽  
...  

Abstract Background To understand and measure the association between chronic inflammation, aging, and age-related diseases, broadly applicable standard biomarkers of systemic chronic inflammation are needed. We tested whether elevated blood levels of the emerging chronic inflammation marker soluble urokinase plasminogen activator receptor (suPAR) were associated with accelerated aging, lower functional capacity, and cognitive decline. Methods We used data from the Dunedin Study, a population-representative 1972–1973 New Zealand birth cohort (n = 1037) that has observed participants to age 45 years. Plasma suPAR levels were analyzed at ages 38 and 45 years. We performed regression analyses adjusted for sex, smoking, C-reactive protein, and current health conditions. Results Of 997 still-living participants, 875 (88%) had plasma suPAR measured at age 45. Elevated suPAR was associated with accelerated pace of biological aging across multiple organ systems, older facial appearance, and with structural signs of older brain age. Moreover, participants with higher suPAR levels had greater decline in physical function and cognitive function from childhood to adulthood compared to those with lower suPAR levels. Finally, improvements in health habits between ages 38 and 45 (smoking cessation or increased physical activity) were associated with less steep increases in suPAR levels over those years. Conclusions Our findings provide initial support for the utility of suPAR in studying the role of chronic inflammation in accelerated aging and functional decline.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S735-S735
Author(s):  
Luigi Ferrucci ◽  
Shabnam Salimi ◽  
Luigi Ferrucci

Abstract Any stimulus that endangers body integrity (stressor) results in an adaptive response to resolve stressful state and determine adaptive or and maladaptive responses. Both chronic extrinsic and intrinsic stressors can produce long-lasting, epigenetic changes in various organs that can eventually result in accelerated changes in bio-physio-pathology. There is initial evidence that stress response involves mechanisms of the epigenetic basis of adaptation and stress response to biological aging and chronic diseases. With aging, homeostasis stability declines causing augmented vulnerability to the external and internal stress. Individuals in whom vulnerability trespass a certain threshold experience accelerated aging and deterioration of health and/ or “secondary aging” phenomena such as premature mortality. Because of substantial heterogeneity of the rate of decline in homeostatic stability, there is inter-individual variability in the age of appearance of chronic diseases and the increased risk of disability and mortality. Thus, tools for the quantification of a stress response would be clinically valuable. Therefore, this symposium suggests approaches to study the epigenetic basis of molecular adaptations across various age, organs’ health-span, and life-span.


2021 ◽  
Author(s):  
Ana I Hernández Cordero ◽  
Chen Xi Yang ◽  
Xuan Li ◽  
Stephen Milne ◽  
Virginia Chen ◽  
...  

Abstract Background: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. Methods: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated With Chronic Obstructive Pulmonary Disease study (MACRO) and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George respiratory questionary score [SGRQ]) over this time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbations and hospitalizations (adjusted for chronological age, lung function, race, sex, smoking, and body mass index).Results: Participants with short DNAmTL demonstrated increased risk of exacerbation (P=0.02) and hospitalization (P=0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P=1.35x10-04) and hospitalization (P=5.21x10-03) and poor health status (SGRQ) independent of chronological age (P=0.03).Conclusion: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus is a promising biomarker for poor outcomes in COPD.


Sign in / Sign up

Export Citation Format

Share Document