scholarly journals Topoisomerase II inhibitors induce cGAS-STING dependent inflammation resulting in cytokine induction and immune checkpoint activation

2019 ◽  
Author(s):  
R. D. A Wilkinson ◽  
N. McCabe ◽  
E. E. Parkes ◽  
E.M. Barros ◽  
D. I. Johnston ◽  
...  

AbstractTumours with genomic instability demonstrate enhanced immunogenicity and potential for response to immune checkpoint blockade (ICB). We previously demonstrated activation of the cGAS-STING pathway following loss of DNA repair, resulting in cytokine induction, lymphocytic infiltration and immune checkpoint activation. Here we explore the role of chemotherapies in inducing this innate immune response, identifying topoisomerase II (topo-II) inhibitors, particularly doxorubicin and epirubicin, as potent inducers of a cGAS-STING dependent interferon response. Mechanistically, topo-II inhibition resulted in significant induction of cytoplasmic DNA and subsequent micronuclei formation, a requirement for efficient cGAS-STING activation and consequent cytokine and immune checkpoint gene induction. Importantly, increased cytokine and immune checkpoint gene expression, as well as increased immune cell infiltration, was also observed in patient derived breast tumour biopsies following topo-II inhibitor-based treatment. Taken together, this study indicates topo-II inhibitors such as doxorubicin, may be best placed to induce immunogenic inflammation, and thereby increase responses to ICB therapies.SignificanceThis work demonstrates how topo-II inhibitors induce STING-pathway activation, cytokine induction and immune checkpoint protein upregulation in cancer cells and provides a rationale for combining topo-II inhibitors with ICB therapy in early breast cancer.

Author(s):  
Xuefei Liu ◽  
Ziwei Luo ◽  
Xuechen Ren ◽  
Zhihang Chen ◽  
Xiaoqiong Bao ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an immunosuppressive microenvironment, which makes immune checkpoint blockade (ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an immunosuppressive microenvironment is important for the development of new effective immunotherapy strategies.Methods: This study comprehensively evaluated the cell-cell communications between malignant cells and immune cells by integrative analyses of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT) score was constructed to predict survival and therapy response in PDAC patients. Immunological characteristics, enriched pathways, and mutations were evaluated in high- and low MIT groups.Results: We found that PDAC had high level of immune cell infiltrations, mainly were tumor-promoting immune cells. Frequent communication between malignant cells and tumor-promoting immune cells were observed. 15 ligand-receptor pairs between malignant cells and tumor-promoting immune cells were identified. We selected genes highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT) score. MIT score was positively correlated with tumor-promoting immune infiltrations. PDAC patients with high MIT score usually had a worse response to immune checkpoint blockade (ICB) immunotherapy.Conclusion: The ligand-receptor pairs identified in this study may provide potential targets for the development of new immunotherapy strategy. MIT score was established to measure tumor-promoting immunocyte infiltration. It can serve as a prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy response.


2020 ◽  
Vol 1 (8) ◽  
pp. 100139
Author(s):  
Valsamo Anagnostou ◽  
Daniel C. Bruhm ◽  
Noushin Niknafs ◽  
James R. White ◽  
Xiaoshan M. Shao ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 331-351
Author(s):  
Shridar Ganesan ◽  
Janice Mehnert

Immune checkpoint blockade (ICB) has significant clinical activity in diverse cancer classes and can induce durable remissions in even refractory advanced disease. However, only a minority of cancer patients treated with ICB have long-term benefits, and ICB treatment is associated with significant, potentially life-threatening, autoimmune side effects. There is a great need to develop biomarkers of response to guide patient selection to maximize the chance of benefit and prevent unnecessary toxicity, and current biomarkers do not have optimal positive or negative predictive value. A variety of potential biomarkers are currently being developed, including those based on assessment of checkpoint protein expression, evaluation of tumor-intrinsic features including mutation burden and viral infection, evaluation of features of the tumor immune microenvironment including nature of immune cell infiltration, and features of the host such as composition of the gut microbiome. Better understanding of the underlying fundamental mechanisms of immune response and resistance to ICB, along with the use of complementary assays that interrogate distinct features of the tumor, the tumor microenvironment, and host immune system, will allow more precise use of these therapies to optimize patient outcomes.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A5.1-A5
Author(s):  
A Martinez-Usatorre ◽  
E Kadioglu ◽  
C Cianciaruso ◽  
B Torchia ◽  
J Faget ◽  
...  

BackgroundImmune checkpoint blockade (ICB) with antibodies against PD-1 or PD-L1 may provide therapeutic benefits in patients with non-small cell lung cancer (NSCLC). However, most tumours are resistant and cases of disease hyper-progression have also been reported.Materials and MethodsGenetically engineered mouse models of KrasG12Dp53null NSCLC were treated with cisplatin along with antibodies against angiopoietin-2/VEGFA, PD-1 and CSF1R. Tumour growth was monitored by micro-computed tomography and the tumour vasculature and immune cell infiltrates were assessed by immunofluorescence staining and flow cytometry.ResultsCombined angiopoietin-2/VEGFA blockade by a bispecific antibody (A2V) modulated the vasculature and abated immunosuppressive macrophages while increasing CD8+effector T cells in the tumours, achieving disease stabilization comparable or superior to cisplatin-based chemotherapy. However, these immunological responses were unexpectedly limited by the addition of a PD-1 antibody, which paradoxically enhanced progression of a fraction of the tumours through a mechanism involving regulatory T cells and macrophages. Elimination of tumour-associated macrophages with a CSF1R-blocking antibody induced NSCLC regression in combination with PD-1 blockade and cisplatin.ConclusionsThe immune cell composition of the tumour determines the outcome of PD-1 blockade. In NSCLC, high infiltration of regulatory T cells and immunosuppressive macrophages may account for tumour hyper-progression upon ICB.Disclosure InformationA. Martinez-Usatorre: None. E. Kadioglu: None. C. Cianciaruso: None. B. Torchia: None. J. Faget: None. E. Meylan: None. M. Schmittnaegel: None. I. Keklikoglou: None. M. De Palma: None.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 809 ◽  
Author(s):  
Kloten ◽  
Lampignano ◽  
Krahn ◽  
Schlange

Over the last decade, the immune checkpoint blockade targeting the programmed death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis has improved progression-free and overall survival of advanced non-small cell lung cancer (NSCLC) patients. PD-L1 tumor expression, along with tumor mutational burden, is currently being explored as a predictive biomarker for responses to immune checkpoint inhibitors (ICIs). However, lung cancer patients may have insufficient tumor tissue samples and the high bleeding risk often prevents additional biopsies and, as a consequence, immunohistological evaluation of PD-L1 expression. In addition, PD-L1 shows a dynamic expression profile and can be influenced by intratumoral heterogeneity as well as the immune cell infiltrate in the tumor and its microenvironment, influencing the response rate to PD-1/PD-L1 axis ICIs. Therefore, to identify subgroups of patients with advanced NSCLC that will most likely benefit from ICI therapies, molecular characterization of PD-L1 expression in circulating tumor cells (CTCs) might be supportive. In this review, we highlight the use of CTCs as a complementary diagnostic tool for PD-L1 expression analysis in advanced NSCLC patients. In addition, we examine technical issues of PD-L1 measurement in tissue as well as in CTCs.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1641
Author(s):  
William H. Gmeiner

Chemotherapy modulates the anti-tumor immune response and outcomes depend on the balance of favorable and unfavorable effects of drugs on anti-tumor immunity. 5-Florouracil (5-FU) is widely used in adjuvant chemotherapy regimens to treat colorectal cancer (CRC) and provides a survival benefit. However, survival remains poor for CRC patients with advanced and metastatic disease and immune checkpoint blockade therapy benefits only a sub-set of CRC patients. Here we discuss the effects of 5-FU-based chemotherapy regimens to the anti-tumor immune response. We consider how different aspects of 5-FU’s multi-factorial mechanism differentially affect malignant and immune cell populations. We summarize recent studies with polymeric fluoropyrimidines (e.g., F10, CF10) that enhance DNA-directed effects and discuss how such approaches may be used to enhance the anti-tumor immune response and improve outcomes.


2020 ◽  
Author(s):  
Longqing Li ◽  
Lianghao Zhang ◽  
Manhas Adbul Khader ◽  
Yan Zhang ◽  
Xinchang Lu ◽  
...  

Abstract Background: Osteosarcoma is a malignant bone tumor common in children and adolescents. Metastatic status remains the most important guideline for classifying patients and making clinical decisions. Despite many efforts, newly diagnosed patients receive the same therapy that patients have received over the last 4 decades. With the development of high-throughput sequencing technology and the rise of immunotherapy, it is necessary to deeply explore the immune molecular mechanism of osteosarcoma.Methods: We obtained RNA-seq data and clinical information of osteosarcoma patients from TCGA database and TARGET database. With the help of co-expression analysis we identified immune-related lncRNA and then by means of univariate Cox regression analysis prognostic-related lncRNA was screened out. And also by using least absolute shrinkage and selection operator regression method a model based on immune-related lncRNA was constructed. The differences in overall survival, immune infiltration, immune checkpoint gene expression, and tumor microenvironmental immunity type between the two groups were evaluated.Results: We constructed a signature consisting of 13 lncRNA. Our results show that signatures can reliably predict the overall survival of patients with osteosarcoma and can bring net clinical benefits. Further more, the signatures can be used for further risk stratification of the metastasis patients. Patients in the low-risk group had higher immune cell infiltration and immune checkpoint gene expression. The results from gene set variation analysis show that patients in low-risk group are closely related to immune-related pathways when compared with patients in high-risk group. Finally, patients in the low-risk group are more likely to be classified as TMIT I and hence more likely to benefit from immunotherapy.Conclusion: Our signature may be a reliable marker for predicting the overall survival of patients with osteosarcoma.


2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


2020 ◽  
Vol 8 (Suppl 1) ◽  
pp. A5.2-A6
Author(s):  
Nils-Petter Rudqvist ◽  
Roberta Zappasodi ◽  
Daniel Wells ◽  
Vésteinn Thorsson ◽  
Alexandria Cogdill ◽  
...  

BackgroundImmune checkpoint blockade (ICB) has revolutionized cancer treatment. However, long-term benefits are only achieved in a small fraction of patients. Understanding the mechanisms underlying ICB activity is key to improving the efficacy of immunotherapy. A major limitation to uncovering these mechanisms is the limited number of responders within each ICB trial. Integrating data from multiple studies of ICB would help overcome this issue and more reliably define the immune landscape of durable responses. Towards this goal, we formed the TimIOs consortium, comprising researchers from the Society for Immunotherapy of Cancer Sparkathon TimIOs Initiative, the Parker Institute of Cancer Immunotherapy, the University of North Carolina-Chapel Hill, and the Institute for Systems Biology. Together, we aim to improve the understanding of the molecular mechanisms associated with defined outcomes to ICB, by building on our joint and multifaceted expertise in the field of immuno-oncology. To determine the feasibility and relevance of our approach, we have assembled a compendium of publicly available gene expression datasets from clinical trials of ICB. We plan to analyze this data using a previously reported pipeline that successfully determined main cancer immune-subtypes associated with survival across multiple cancer types in TCGA.1MethodsRNA sequencing data from 1092 patients were uniformly reprocessed harmonized, and annotated with predefined clinical parameters. We defined a comprehensive set of immunogenomics features, including immune gene expression signatures associated with treatment outcome,1,2 estimates of immune cell proportions, metabolic profiles, and T and B cell receptor repertoire, and scored all compendium samples for these features. Elastic net regression models with parameter optimization done via Monte Carlo cross-validation and leave-one-out cross-validation were used to analyze the capacity of an integrated immunogenomics model to predict durable clinical benefit following ICB treatment.ResultsOur preliminary analyses confirmed an association between the expression of an IFN-gamma signature in tumor (1) and better outcomes of ICB, highlighting the feasibility of our approach.ConclusionsIn line with analysis of pan-cancer TCGA datasets using this strategy (1), we expect to identify analogous immune subtypes characterizing baseline tumors from patients responding to ICB. Furthermore, we expect to find that these immune subtypes will have different importance in the model predicting response and survival. Results of this study will be incorporated into the Cancer Research Institute iAtlas Portal, to facilitate interactive exploration and hypothesis testing.ReferencesThorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-H O, Porta-Pardo E. Gao GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of Cancer. Immunity 2018; 48(4): 812–830.e14. https://doi.org/10.1016/j.immuni.2018.03.023.Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, et al. Robust Prediction of Response to Immune Checkpoint Blockade Therapy in Metastatic Melanoma. Nat. Med 2018; 24(10): 1545. https://doi.org/10.1038/s41591-018-0157-9.


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Nootan Pandey ◽  
Daniel Keifenheim ◽  
Makoto Michael Yoshida ◽  
Victoria A. Hassebroek ◽  
Caitlin Soroka ◽  
...  

Topoisomerase II (Topo II) is essential for mitosis since it resolves sister chromatid catenations. Topo II dysfunction promotes aneuploidy and drives cancer. To protect from aneuploidy, cells possess mechanisms to delay anaphase onset when Topo II is perturbed, providing additional time for decatenation. Molecular insight into this checkpoint is lacking. Here we present evidence that catalytic inhibition of Topo II, which activates the checkpoint, leads to SUMOylation of the Topo II C-terminal domain (CTD). This modification triggers mobilization of Aurora B kinase from inner centromeres to kinetochore proximal centromeres and the core of chromosome arms. Aurora B recruitment accompanies histone H3 threonine-3 phosphorylation and requires Haspin kinase. Strikingly, activation of the checkpoint depends both on Haspin and Aurora B. Moreover, mutation of the conserved CTD SUMOylation sites perturbs Aurora B recruitment and checkpoint activation. The data indicate that SUMOylated Topo II recruits Aurora B to ectopic sites, constituting the molecular trigger of the metaphase checkpoint when Topo II is catalytically inhibited.


Sign in / Sign up

Export Citation Format

Share Document