scholarly journals UAV Based Imaging Platform for Monitoring Maize Growth Throughout Development

2019 ◽  
Author(s):  
Sara B. Tirado ◽  
Candice N. Hirsch ◽  
Nathan M. Springer

ABSTRACTPlant height (PH) data collected at high temporal resolutions can give insight into important growth parameters useful for identifying elite material in plant breeding programs and developing management guidelines in production settings. However, in order to increase the temporal resolution of PH data collection, more robust, rapid and low-cost methods are needed to evaluate field plots than those currently available. Due to their low cost and high functionality, unmanned aerial vehicles (UAVs) can be an efficient means for collecting height at various stages throughout development. We have developed a procedure for utilizing structure from motion algorithms to collect PH from RGB drone imagery and have used this platform to characterize a yield trial consisting of 24 maize hybrids planted in replicate under two dates and three planting densities in St Paul, MN in the summer of 2018. The field was imaged weekly after planting using a DJI Phantom 4 Advanced drone to extract PH and hand measurements were collected following aerial imaging of the field. In this work, we test the error in UAV PH measurements and compare it to the error obtained within manually acquired PH measurements. We also propose a method for improving the correspondence of manual and UAV measured height and evaluate the utility of using UAV obtained PH data for assessing growth of maize genotypes and for estimating end-season height.

2019 ◽  
Vol 41 (1) ◽  
pp. 42624
Author(s):  
Joaquim Vicente Uate ◽  
Joel Jorge Nunvuga ◽  
Carlos Pereira da Silva ◽  
Lauro Jose Moreira Guimarães ◽  
Renzo Garcia Von Pinho ◽  
...  

Maize breeding programs conduct multi-environment trials every year to assess the performance of new cultivars in pre-releasing tests. The data are combined across sites and seasons to perform a joint analysis in order to obtain information that will help breeders to select the best cultivars for different environments. Beyond this, it is essential to understand the different factors that can hamper the selection and genetic progress (i.e., genetic variability, selection intensity and genotype-by-environment interactions). In this study, the genetic progress (GP) was estimated and the adaptability and stability of 81 maize genotypes were evaluated in a series of trials for the value of cultivation and use (VCU) between the 2010/11 and 2014/15 growing seasons. The genotypes were composed of open-pollinated varieties, topcross hybrids, intervarietal hybrids, and single, double and three-way cross hybrids and were assessed in 117 environments in the central region of Brazil, from which 22 presented environmental stresses. For grain yield, an annual GP of 331.5 kg ha-1 was observed, thus showing efficiency in the selection of superior cultivars. Additionally, it was observed that some low-cost seed cultivars showed yield potential, adaptability and stability estimates that were compatible with commercial hybrids, thus making them quite attractive for cultivation in environments with or without abiotic stresses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijiao Ma ◽  
Shaoqing Zhang ◽  
Jincheng Zhu ◽  
Jingwen Wang ◽  
Junzhen Ren ◽  
...  

AbstractNon-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.


1999 ◽  
Vol 26 (2) ◽  
pp. 100-106 ◽  
Author(s):  
A. K. Culbreath ◽  
J. W. Todd ◽  
D. W. Gorbet ◽  
S. L. Brown ◽  
J. A. Baldwin ◽  
...  

Abstract Epidemics of tomato spotted wilt, caused by tomato spotted wilt Tospovirus (TSWV), were monitored in field plots of runner-type peanut (Arachis hypogaea L.) cultivars Georgia Green and Georgia Runner and numerous breeding lines from four different breeding programs as part of efforts toward characterizing breeding lines with potential for release as cultivars. Breeding lines were divided into early, medium and late maturity groups. The tests were conducted near Attapulgus, GA and Marianna, FL in 1997 and in Tifton, GA and Marianna, FL in 1998. Epidemics in some early and medium maturing breeding lines, including some genotypes with high oleic acid oil chemistry, were comparable to those in Georgia Green, the cultivar most frequently used in the southeastern U.S. for suppression of spotted wilt epidemics. No early maturing breeding lines had lower spotted wilt final intensity ratings or higher yields than Georgia Green. However, spotted wilt intensity ratings in some late maturing lines and a smaller number of medium maturing lines were significantly lower than those of Georgia Green. Several of those lines also produced greater pod yields than Georgia Green. Results from these experiments indicated that there is potential for improving management of spotted wilt though development of cultivars that suppress spotted wilt epidemics more than currently available cultivars. There was no indication that differences in spotted wilt ratings corresponded to differences in numbers of thrips adults or larvae.


2017 ◽  
Vol 9 (10) ◽  
pp. 253
Author(s):  
Luciano Fernandes Moura ◽  
Pedro Felipe Sousa Teixeira ◽  
Franklin Aragão Gondim ◽  
Francisco Holanda Nunes Junior ◽  
Rifandreo Monteiro Barbosa ◽  
...  

Biodigesters have been used to convert biomass into biogas and biofertilizers. This energy use has been important for the reduction of solid waste pollution in the environment. This work aims to analyse the viability of the use of pig biofertilizer produced by an Indian biodigester prototype, monitored by a data acquisition system. The biodigester used was an Indian prototype built on a low cost material that is easy to acquire (polyvinyl chloride-PVC). After the biofertilizer production, we tested its efficiency and viability under conditions of vegetation house in the cultivation of sunflower plants. The experimental design was completely randomized in a factorial arrangement with 4 concentrations of biofertilizer (0, 40, 80 and 120 kg N ha-1) × 4 harvest periods (14, 21, 25 and 29 days after sowing). We evaluated biometric and vigor parameters by measurements of stem diameter, height of the aerial part, number of leaves and production of fresh and dry matter of roots, aerial and total parts, as well as the relative chlorophyll content. We performed the experiment with five repetitions using two plants each and we submitted the data to analysis of variance (ANOVA) and polynomial regression using the statistical software Sisvar 5.4. The functional Indian biodigester prototype produced a biofertilizer of excellent quality and viability as a biofertilizer for the initial growth of sunflower plants. The biofertilizer served as a nutritional source in the sunflower crop, since it provided increases in all the growth parameters analyzed in relation to the control group (plants in the absence of biofertilizer), especially in the concentration of 120 kg N ha-1.


Author(s):  
Monica Subashini M ◽  
Sreethul Das ◽  
Soumil Heble ◽  
Utkarsh Raj ◽  
R Karthik

<p>About 10% of the world’s workforce is directly dependent on agriculture for income and about 99% of food consumed by humans comes from farming. Agriculture is highly climate dependent and with global warming and rapidly changing weather it has become necessary to closely monitor the environment of growing crops for maximizing output as well as increasing food security while minimizing resource usage. In this study, we developed a low cost system which will monitor the temperature, humidity, light intensity and soil moisture of crops and send it to an online server for storage and analysis, based on this data the system can control actuators to control the growth parameters. The three tier system architecture consists of sensors and actuators on the lower level followed by an 8-bit AVR microcontroller which is used for data acquisition and processing topped by an ESP8266 Wi-Fi module which communicates with the internet server. The system uses relay to control actuators such as pumps to irrigate the fields; online weather data is used to optimize the irrigation cycles. The prototyped system was subject to several tests, the experimental results express the systems reliability and accuracy which accentuate its feasibility in real-world applications.</p>


Author(s):  
Cherry Bhargava

As the integration of components are increasing from VLSI to ULSI level. This may lead to damage of electronic system because each component has its own operating characteristics and conditions. So, health prognostic techniques are used that comprise a deep insight into failure cause and effects of all the components individually as well as an integrated technique. It will raise alarm, in case health condition, of the components drift from the desired outcomes. From toy to satellite and sand to silicon, the major key constraint of designing and manufacturing industry are towards enhanced operating performance at less operating time. As the technology advances towards high-speed and low-cost gadgets, reliability becomes a challenging issue.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3545
Author(s):  
Petr Škarpa ◽  
Daniel Klofáč ◽  
František Krčma ◽  
Jana Šimečková ◽  
Zdenka Kozáková

Utilization of plasma activated water (PAW) for plant growing is mainly connected with the treatment of seeds and subsequent stimulation of their germination. A potential of PAW is its relatively simple and low-cost preparation that calls for studying its wider application in plant production. For this purpose, a pot experiment was realized in order to prove effects of the foliar PAW application on maize growth. The stepped PAW foliar application, carried out in 7-day intervals, led to provable decrease of chlorophyll contents in leaves compared to the distilled water application. The PAW application significantly increased root electrical capacitance, but it had no provable effect on weight of the aboveground biomass. Chlorophyll fluorescence parameters expressing the CO2 assimilation rate and variable fluorescence of dark-adapted leaves were provably decreased by PAW, but quantum yield of photosystem II electron transport was not influenced. A provably higher amount of nitrogen was detected in dry matter of plants treated by PAW, but contents of other macro- and micro-nutrients in the aboveground biomass of maize were not affected. Results of this pilot verification of the PAW application have shown a potential for plant growth optimization and possibility for its further utilization, especially in combination with liquid fertilizers.


2012 ◽  
Vol 1433 ◽  
Author(s):  
A. Severino ◽  
M. Mauceri ◽  
R. Anzalone ◽  
A. Canino ◽  
N. Piluso ◽  
...  

ABSTRACT3C-SiC is very attractive due the chance to be grown on large-area, low-cost Si substrates. Moreover, 3C-SiC has higher channel electron mobility with respect to 4H-SiC, interesting property in MOSFET applications. Other application fields where 3C-SiC can play a significant role are solar cells and MEMS-based sensors. In this work, we present a general overview of 3C-SiC growth on Si substrate. The influence of growth parameters, such as the growth rate, on the crystal quality of 3C-SiC films is discussed. The main issue for 3C-SiC development is the reduction of the stacking fault density, which shows an exponential decreasing trend with the film thickness tending to a saturation value of about 1000 cm-1. Some aspect of processing will be also faced with the realization of cantilever for Young modulus calculations and the implantation of Al ions for the study of damaging and recovery of the 3C-SiC crystal.


Author(s):  
Aditya Jain ◽  
Anirudh Badam ◽  
Gireeja Ranade ◽  
Sudipta Sinha ◽  
Akshay Uttama Nambi S N ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document