Growth and processing of heteroepitaxial 3C-SiC films for electronic devices applications

2012 ◽  
Vol 1433 ◽  
Author(s):  
A. Severino ◽  
M. Mauceri ◽  
R. Anzalone ◽  
A. Canino ◽  
N. Piluso ◽  
...  

ABSTRACT3C-SiC is very attractive due the chance to be grown on large-area, low-cost Si substrates. Moreover, 3C-SiC has higher channel electron mobility with respect to 4H-SiC, interesting property in MOSFET applications. Other application fields where 3C-SiC can play a significant role are solar cells and MEMS-based sensors. In this work, we present a general overview of 3C-SiC growth on Si substrate. The influence of growth parameters, such as the growth rate, on the crystal quality of 3C-SiC films is discussed. The main issue for 3C-SiC development is the reduction of the stacking fault density, which shows an exponential decreasing trend with the film thickness tending to a saturation value of about 1000 cm-1. Some aspect of processing will be also faced with the realization of cantilever for Young modulus calculations and the implantation of Al ions for the study of damaging and recovery of the 3C-SiC crystal.

2019 ◽  
Author(s):  
Xiejia

High electron mobility AlGaN/GaN have been successfully grown on low cost and high challenges AlN/Si substrates. By inserting a thin SiN layer between GaN and AlN to improve the quality of GaN, the result showed that the thin SiN layer could greatly increase the mobility of the two-dimensional electron gas formed at the interface of AlGaN and GaN layers. This suggests that it is possible to grow high-quality GaN on silicon as well as on sapphire for many applications


2019 ◽  
Author(s):  
Yu Yun ◽  
Xiejia

High electron mobility AlGaN/GaN have been successfully grown on low cost and high challenges AlN/Si substrates. By inserting a thin SiN layer between GaN and AlN to improve the quality of GaN, the result showed that the thin SiN layer could greatly increase the mobility of the two-dimensional electron gas formed at the interface of AlGaN and GaN layers. This suggests that it is possible to grow high-quality GaN on silicon as well as on sapphire for many applications


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 578 ◽  
Author(s):  
Biao Shi ◽  
Daming Zhou ◽  
Shaoxi Fang ◽  
Khouloud Djebbi ◽  
Shuanglong Feng ◽  
...  

Monolayer WS2 (Tungsten Disulfide) with a direct-energy gap and excellent photoluminescence quantum yield at room temperature shows potential applications in optoelectronics. However, controllable synthesis of large-area monolayer WS2 is still challenging because of the difficulty in controlling the interrelated growth parameters. Herein, we report a facile and controllable method for synthesis of large-area monolayer WS2 flakes by direct sulfurization of powdered WO3 (Tungsten Trioxide) drop-casted on SiO2/Si substrates in a one-end sealed quartz tube. The samples were thoroughly characterized by an optical microscope, atomic force microscope, transmission electron microscope, fluorescence microscope, photoluminescence spectrometer, and Raman spectrometer. The obtained results indicate that large triangular monolayer WS2 flakes with an edge length up to 250 to 370 μm and homogeneous crystallinity were readily synthesized within 5 min of growth. We demonstrate that the as-grown monolayer WS2 flakes show distinctly size-dependent fluorescence emission, which is mainly attributed to the heterogeneous release of intrinsic tensile strain after growth.


Author(s):  
J.H. Mazur ◽  
J. Washburn ◽  
T. Henderson ◽  
J. Klem ◽  
W.T. Masselink ◽  
...  

Possibility of growth of epitaxial lll-V (GaAs, InP, GaP, etc.) compound semiconductors on nonpolar substrates (Ge,Si) is of considerable interest from the view point of monolithic integration of lll-V optoelectronic and Si electronic devices. The growth of GaAs and AIGaAs layers on Si substrates is additionally attractive because of good mechanical strength and low cost of Si substrates. However, a principal difficulty in growing polar semiconductors on nonpolar substrates is that there are no preferential bonding sites for cations and anions in the first layer of growth, which can result in antiphase boundaries (APB’s) in addition to defects due to misfit (∼4% for GaAs on Si).In this work GaAs layers were grown on (100) Si substrates using procedures described elsewhere. The MBE growth started from a first deposition of As as a prelayer on the Si substrate followed by GaAs growth at 580°C. Cross-sectional TEM specimens were prepared using the same procedures as reported earlier for the case of Si-SiO2 cross-sections.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 799 ◽  
Author(s):  
Mariana Fraga ◽  
Rodrigo Pessoa

A search of the recent literature reveals that there is a continuous growth of scientific publications on the development of chemical vapor deposition (CVD) processes for silicon carbide (SiC) films and their promising applications in micro- and nanoelectromechanical systems (MEMS/NEMS) devices. In recent years, considerable effort has been devoted to deposit high-quality SiC films on large areas enabling the low-cost fabrication methods of MEMS/NEMS sensors. The relatively high temperatures involved in CVD SiC growth are a drawback and studies have been made to develop low-temperature CVD processes. In this respect, atomic layer deposition (ALD), a modified CVD process promising for nanotechnology fabrication techniques, has attracted attention due to the deposition of thin films at low temperatures and additional benefits, such as excellent uniformity, conformability, good reproducibility, large area, and batch capability. This review article focuses on the recent advances in the strategies for the CVD of SiC films, with a special emphasis on low-temperature processes, as well as ALD. In addition, we summarize the applications of CVD SiC films in MEMS/NEMS devices and prospects for advancement of the CVD SiC technology.


2011 ◽  
Vol 1324 ◽  
Author(s):  
Mihir Tungare ◽  
Jeffrey M. Leathersich ◽  
Neeraj Tripathi ◽  
Puneet Suvarna ◽  
Fatemeh (Shadi) Shahedipour-Sandvik ◽  
...  

ABSTRACTIII-nitride structures on Si are of great technological importance due to the availability of large area, epi ready Si substrates and the ability to heterointegrate with mature silicon micro and nanoelectronics. High voltage, high power density, and high frequency attributes of GaN make the III-N on Si platform the most promising technology for next-generation power devices. However, the large lattice and thermal mismatch between GaN and Si (111) introduces a large density of dislocations and cracks in the epilayer. Cracking occurs along three equivalent {1−100} planes which limits the useable device area. Hence, efforts to obtain crack-free GaN on Si have been put forth with the most commonly reported technique being the insertion of low temperature (LT) AlN interlayers. However, these layers tend to further degrade the quality of the devices due to the poor quality of films grown at a lower temperature using metal organic chemical vapor deposition (MOCVD). Our substrate engineering technique shows a considerable improvement in the quality of 2 μm thick GaN on Si (111), with a simultaneous decrease in dislocations and cracks. Dislocation reduction by an order of magnitude and crack separation of > 1 mm has been achieved. Here we combine our method with step-graded AlGaN layers and LT AlN interlayers to obtain crack-free structures greater than 3.5 μm on 2” Si (111) substrates. A comparison of these film stacks before and after substrate engineering is done using atomic force microscopy (AFM) and optical microscopy. High electron mobility transistor (HEMT) devices developed on a systematic set of samples are tested to understand the effects of our technique in combination with crack reduction techniques. Although there is degradation in the quality upon the insertion of LT AlN interlayers, this degradation is less prominent in the stack grown on the engineered substrates. Also, this methodology enables a crack-free surface with the capability of growing thicker layers.


2012 ◽  
Vol 15 (1) ◽  
pp. 25 ◽  
Author(s):  
R. Beisenov ◽  
R. Ebrahim ◽  
Z.A. Mansurov ◽  
S.Zh. Tokmoldin ◽  
B.Z. Mansurov ◽  
...  

Thick silicon carbide films were grown on sapphire (0001) and silicon (111) substrates using metal organic chemical vapor deposition (MOCVD). Diethylmethylsilane (DEMS) has been used as a single precursor, which contain Si and C atoms in the same molecule, without any carrier or bubbler gas. Atomic structure, surface composition and morphology have been investigated by XRD, AES, SEM and AFM analysis. SiC films of 5-7 micron thickness were grown at a rate of ~ 40 nm/min on sapphire (0001) and Si (111) substrates. The films grown at low temperature (850 ºC and 900 ºC) on both substrates show crystalline 3C-SiC in the (111) orientation. XRD results show that the orientation of the crystal structure does not depend of the substrate orientation AFM pictures of SiC films grown on sapphire (0001) exhibit more crystalline order as compared to films grown on the Si (111) substrates. AES of the grown films shows that in both cases the Si peak intensity is greater than that of carbon. This work shows promise for the development of alternative processes for developing low cost, large area substrates for application to IIInitrides LED and UV photodetector fabrication and also for gas detector application.


2000 ◽  
Vol 622 ◽  
Author(s):  
G.E. Carter ◽  
T. Zheleva ◽  
G. Melnychuck ◽  
B. Geil ◽  
K. Jones ◽  
...  

ABSTRACTPendeo Epitaxy is a type of Lateral Epitaxial Overgrowth (LEO) that instead of using a dielectric buffer layer, uses an etched substrate to grow laterally without an interface layer. We report the first successful growth of 3C-SiC on Si using Pendeo epitaxy. Rectangular stripes of 3C-SiC on (100) Si substrates were fabricated, along both the [110] and [100] directions. Pendeo epi was only observed for columns parallel to [001], indicating a preferred growth facet for Pendeo epi of 3C-SiC on Si. SEM and TEM investigations were performed to assess the material quality of the Pendeo 3C-SiC material. Films were grown for 60 min at 1310°C and film coalescence was achieved without evidence of voids where the growth fronts joined. TEM data indicate not only the growth of vertical and lateral 3C-SiC on the 3C-SiC seed layer but direct nucleation of 3C-SiC on the exposed Si columns side wall and trench bottom, despite the lack of a carbonization procedure. The quality of the Pendeo 3C-SiC film appears to be of high quality indicating that Pendeo epi of 3C-SiC on low-cost, large-diameter Si substrates may prove to be a cost effective way to grow device-grade SiC layers on Si substrates for device applications.


2011 ◽  
Vol 254 ◽  
pp. 163-166
Author(s):  
Atul Vir Singh ◽  
Sudhir Chandra ◽  
Gouranga Bose

In the present work, silicon carbide (SiC) films were deposited by RF magnetron sputtering process on Si (100) substrates for micro-cantilever fabrication. The films were deposited without external substrate heating using a ceramic SiC target at 10 mTorr sputtering pressure, 200 W power and 50 mm target-to-substrate spacing. X-ray diffraction pattern shows that the films were amorphous in nature. In order to investigate the chemical inertness, the SiC coated Si substrates were dipped in buffered HF (BHF) at room temperature and in 40% KOH solution at 80 °C for varying length of time. Atomic force microscope was used to investigate surface roughness and morphology of the films before and after chemical processing. Micro-cantilever beams of the SiC film were fabricated by a single mask process. The SiC film was patterned using reactive ion etching (RIE) in SF6-O2 plasma. Thermally evaporated Al film was used as a mask during RIE process. This process also resulted in the formation of convex corners which were exploited for anisotropic etching of Si under the SiC film. The SiC cantilever beams were released by anisotropic etching of Si in KOH at 80 °C without using additional masking material. Scanning electron microscopy was used to observe the fabricated SiC micro-cantilever beams. The morphology of the SiC film after prolonged exposure to KOH was observed to be similar to that of the as-deposited film. The RF magnetron sputtered SiC films were found to be highly inert in KOH and BHF solutions. Due to difficulty in micromachining of bulk SiC material and its high cost, the RF sputtered SiC films on Si can provide a low cost structural material in MEMS.


Sign in / Sign up

Export Citation Format

Share Document