scholarly journals Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs

2019 ◽  
Author(s):  
Narendra Kumar ◽  
Wenjian Wang ◽  
Juan C. Ortiz-Marquez ◽  
Matthew Catalano ◽  
Mason Gray ◽  
...  

AbstractThe rapid increase in antibiotic resistant pathogenic bacteria has become a global threat, which besides the development of new drugs, requires rapid, cheap, scalable, and accurate diagnostics. Label free biosensors relying on electrochemical, mechanical, and mass based detection of whole bacterial cells have attempted to meet these requirements. However, the trade-off between selectivity and sensitivity of such sensors remains a key challenge. In particular, point-of-care diagnostics that are able to reduce and/or prevent unneeded antibiotic prescriptions require highly specific probes with sensitive and accurate transducers that can be miniaturized and multiplexed, and that are easy to operate and cheap. Towards achieving this goal, we present a number of advances in the use of graphene field effect transistors (G-FET) including the first use of peptide probes to electrically detect antibiotic resistant bacteria in a highly specific manner. In addition, we dramatically reduce the needed concentration for detection by employing dielectrophoresis for the first time in a G-FET, allowing us to monitor changes in the Dirac point due to individual bacterial cells. Specifically, we realized rapid binding of bacterial cells to a G-FET by electrical field guiding to the device to realize an overall 3 order of magnitude decrease in cell-concentration enabling a single-cell detection limit, and 9-fold reduction in needed time to 5 minutes. Utilizing our new biosensor and procedures, we demonstrate the first selective, electrical detection of the pathogenic bacterial species Staphylococcus aureus and antibiotic resistant Acinetobacter baumannii on a single platform.

2020 ◽  
Vol 156 ◽  
pp. 112123 ◽  
Author(s):  
Narendra Kumar ◽  
Wenjian Wang ◽  
Juan C. Ortiz-Marquez ◽  
Matthew Catalano ◽  
Mason Gray ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 47-57
Author(s):  
Maria Sergeyevna Zharkova ◽  
Ekaterina S. Umnyakova ◽  
Anna G. Afinogenova ◽  
Gennady E. Afinogenov ◽  
Aleksandr A. Kolobov ◽  
...  

We investigated the combined effects of antimicrobial peptides PG-1 and ChBac3.4 with antiseptics (sodium hypochlorite, dioxidine, prontosan, poviargolum, and etidronic acid) to identify combinations that display synergistic antimicrobial activity against antibiotic-resistant bacteria. We used the checker-board titration method to calculate fractional inhibitory concentration indices, and based on the indices the type of combined action was determined. The combined effect on the metabolic activity of bacteria was evaluated using the fluorescent marker resazurin, and the effect on the permeability of bacterial membranes for chromogenic markers was studied spectrophotometrically. The combined hemolytic activity of the combinations was investigated. Sodium hypochlorite was shown to be antagonistic with both antimicrobial peptides. With other antiseptics, combined action was characterized by additivity or synergy. Synergy was most pronounced with the preparation of highly dispersed silver poviargolum. Antiseptics accelerate the development of the antimicrobial effect of antimicrobial peptides but do not significantly affect the dynamics of the membranolytic action of antimicrobial peptides on bacterial cells. Synergy of hemolytic activity is rare. Thus, the combined use of antimicrobial peptides and antiseptics is promising for combating antibiotic-resistant bacteria and can be used to reduce the toxic effects of these compounds.


Author(s):  
Karolina Jeżak ◽  
Anna Kozajda

AbstractIntensive animal farming emits to the environment very high concentrations of bioaerosol, mainly composed of microorganisms, including antibiotics resistant strains, and their derivatives. Poland is a significant producer of poultry and swine in Europe; Ukraine is located in the immediate vicinity of Poland and the EU. Thus, the review focuses on the presence of potentially pathogenic and antimicrobial-resistant zoonotic bacteria and antimicrobial genes in the environment of farms and food of animal origin in Poland and Ukraine. Existing data confirms presence of these bacteria in the food animal origin chain environment in both countries. However, it is difficult to compare the scale of multidrug-resistant bacteria (e.g. MRSA, ESBL) dissemination in Poland and Ukraine with other EU countries due to lack of more extensive studies and large-scale monitoring in these two countries. A series of studies concerning resistance of pathogenic bacteria isolated from livestock environment have been published in Poland but usually on single farms with a very limited number of samples, and without a genotypic drug resistance marking. From Ukraine are available only few reports, but also disturbing. The risk of antibiotic-resistant bacteria transmission does not only concern animal farming, but also other facilities of animal origin food supply chains, especially slaughterhouses.


2011 ◽  
Vol 7 (6) ◽  
pp. 902-905 ◽  
Author(s):  
Matti Jalasvuori ◽  
Ville-Petri Friman ◽  
Anne Nieminen ◽  
Jaana K. H. Bamford ◽  
Angus Buckling

Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 205
Author(s):  
Jeong Choi ◽  
Hyon Jung ◽  
Yeon Baek ◽  
Bo Kim ◽  
Min Lee ◽  
...  

In this work, the antibacterial activity of silver nanoparticles (AgNPs) synthesized using Areca catechu extracts against three species of antibiotic-susceptible and three species of resistant bacteria was investigated. The effects of this plant were more promising when compared with other medicinal plants tested. The hydrothermal extract of Areca catechu was mixed with silver nitrate to synthesize AgNPs. The synthesized particle characteristics were analyzed by UV–Vis spectrophotometry, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FT-IR). Minimum inhibitory concentration and minimum bactericidal concentration tests were conducted to confirm antibacterial activity and the results showed that AgNPs synthesized using Areca catechu extracts effectively inhibited the growth of bacterial species. Moreover, the SEM images of the bacterial species treated with AgNPs synthesized with Areca catechu extracts showed that clusters of AgNPs were attached to the surface of the bacterial cell wall, which could induce destruction of the cell membranes. The results suggest that AgNPs synthesized with Areca catechu extracts have the potential to treat antibiotic-resistant bacteria known as the major cause of nosocomial infections.


Author(s):  
Lingli Li ◽  
Ming Yu ◽  
Chao Yang ◽  
Chunping Deng ◽  
Lili Ma ◽  
...  

Abstract Bacteriophage has attracted growing interest as a promising therapeutic agent for pathogenic bacteria, especially for antibiotic-resistant bacteria. However, the various abiotic conditions could impact the stability of phages and further threat host-virus interactions. Here, we investigated the stability and lytic activity of virulent polyvalent coliphage (named PE1) by double-layer plaque assay. PE1 can efficiently infect both the drug-sensitive Escherichia coli K12 and multidrug-resistant E. coli NDM-1 even after prolonged storage at 4 °C up to two months. Results showed that PE1 exhibits an outstanding stability to infect E. coli strains under a wide range of thermal (4 °C–60 °C) and pH (4–11) conditions, which covers the thermal and pH variations of most wastewater treatment plants. Moreover, PE1 exhibited high resistibility to heavy metals exposure including Cu2+, Cd2+, Co2+, and Cr3+ at the concentrations below 0.5 mM, and an excellent resistant ability to the variation of ionic strength, which still retained strong infectious ability even treated with saturated sodium chloride solution (350 g/L). This work shows that polyvalent phage PE1 has a strong adaptive capacity to various abiotic factors and should be a good candidate of being an antibacterial agent, especially for antibiotic-resistant bacteria control in sewage.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S716-S717
Author(s):  
Linsey M Donner ◽  
Xu Li ◽  
Daniel D Snow ◽  
Jodi L Sangster ◽  
Zachery R Staley ◽  
...  

Abstract Background Antibiotic resistance is a significant public health threat and widespread use of antibiotics in agriculture is increasing the concern about agricultural contributions to the dissemination of antibiotic resistant bacteria. Of concern is the level of exposure to antibiotics and antibiotic-resistant bacteria in the watershed. Consequently, adopting a One Health approach to measure antibiotic levels and identify antibiotic resistance gene (ARG) transfer at the human, animal and environmental interfaces is essential to better understand how antibiotic resistance is spread. Methods In this project, antibiotic levels were measured using passive organic chemical integrative samplers (POCIS) for 30-day periods from August – November 2018 from Elkhorn River and Shell Creek watersheds in Nebraska (Figure 1). In addition, whole genome sequences of bacterial isolates cultured from the watersheds were assessed to identify ARGs present on mobile genetic elements (MGE) that had >95% similarity to mobile ARG present in isolates recorded in the NCBI GenBank database was identified using ResFinder. Figure 1. Sampling locations within the two watersheds. Results The study demonstrated significant antibiotic levels present throughout the watershed, with five of them associated with human usage (Table 1). In addition, seasonally based drug-resistant bacterial species was associated with specific antibiotic levels in the watershed (Figure 2). Mobile ARGs were detected in 87.5% of isolates collected from the Elkhorn River and 80.0% within Shell Creek (Figure 3). Table 1. Pharmaceutical levels in the watershed Figure 2. Antibiotic levels and drug-resistant bacteria in the watershed Figure 3. Antibiotic resistance observed from each isolate at every sampling date and site. A colored bar denotes that resistance to that antibiotic was observed. Conclusion These results present evidence of transfer of highly mobile ARGs between environment, clinical, and animal-associated bacteria and highlight the need for a One Health perspective in assessing the spread of antibiotic resistance. The presence of significant levels of antibiotics persisting in this agricultural watershed points out the need for ongoing monitoring of compliance with the Food and Drug Administration (FDA) recommendation of veterinarian oversight of the use of antibiotics in the use of veterinary feed directive applications. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.


Sign in / Sign up

Export Citation Format

Share Document