scholarly journals More Than Just a FAD(5): Unsaturated Fatty Acids in Chloroplasts Elicit Protective Autoimmunity

2020 ◽  
Vol 32 (10) ◽  
pp. 3049-3050
Author(s):  
Anne C. Rea
2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


Author(s):  
Sula M. V. Feleti ◽  
Renê L. Aleluia ◽  
Suiany V. Gervásio ◽  
Jean Carlos V. Dutra ◽  
Jessica R. P. Oliveira ◽  
...  

The study was designed to investigate the chemical composition and the biological effects of G. parviflora and V. polyanthes ethanolic extracts in vitro. Total content of phenols, flavonoids and tannins was quantified by spectrophotometry; chemical characterization was permed by mass spectrometry (ESI (-) FT-ICR MS and APCI (+) FT-ICR MS analysis). Antioxidant activities were determined by FRAP and Fe2+ chelating methods. Extracts cytotoxicity was evaluated in human lymphocytes, sarcoma-180 (S-180) and human gastric adenocarcinoma (AGS) cells, by MTT assay. V. polyanthes presented higher total content of tannins and G. parviflora presented higher amount of phenols and flavonoids. Chemical characterization showed the presence of flavonoids, phenolic acids and sesquiterpene lactones in V. polyanthes extract, and steroids, phenolic acids and fatty acids (Poly Unsaturated Fatty Acids - PUFA) in G. parviflora extract. V. polyanthes extract stood out in the Fe2+ chelation test. G. parviflora extract did not present outstanding antioxidant results in the tested protocols. Both species showed a tendency to promote cytotoxicity in human lymphocyte cells. Regarding the antiproliferative effect, both species were able to reduce S-180 cell viability and G. parviflora extract showed high antiproliferative potential in the assay with AGS cells. These findings reinforce the medicinal use of these plants, as well as suggest their potential use for the development of new drugs and for the treatment of cancers.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2018 ◽  
Vol 28 (4) ◽  
pp. 1219-1225
Author(s):  
Filip Jovanovski ◽  
Toni Mitrovski ◽  
Viktorija Bezhovska

Food is not just a pleasure in life, it is also an important factor for our health. Human nutrition is a mixture of nutrients, which are the only source of energy needed for survival. Energy-poor diet endangers many life functions, and above all the working ability. In the world, the meaning of the diet is very serious, and hence the demands for a –rational, healthy and safe diet are growing. Human nutrition contains saturated and unsaturated fatty acids. Essential fatty acids (EFAs) must be ingested in everyday diet because the body does not produce it. They are very important for human health. They are present in each cell of the human body and are an important factor for the normal growth, development and functioning of cells, muscles, nerves and organs. They are also used in the production of certain hormones - such as prostaglandins, which are crucial for the performance of certain important processes. The deficit from EFAs is due to a number of health problems, including more serious diseases.


2018 ◽  
Vol 19 (11) ◽  
pp. 1309-1317 ◽  
Author(s):  
Daisuke Akagi ◽  
Katsuyuki Hoshina ◽  
Toshiaki Watanabe ◽  
Micheal S. Conte

Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


2020 ◽  
Vol 16 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Hadi Emamat ◽  
Zahra Yari ◽  
Hossein Farhadnejad ◽  
Parvin Mirmiran

Recent evidence has highlighted that fat accumulation, particularly abdominal fat distribution, is strongly associated with metabolic disturbance. It is also well-recognized that the metabolic responses to variations in macronutrients intake can affect body composition. Previous studies suggest that the quality of dietary fats can be considered as the main determinant of body-fat deposition, fat distribution, and body composition without altering the total body weight; however, the effects of dietary fats on body composition have controversial results. There is substantial evidence to suggest that saturated fatty acids are more obesogen than unsaturated fatty acids, and with the exception of some isomers like conjugate linoleic acid, most dietary trans fatty acids are adiposity enhancers, but there is no consensus on it yet. On the other hand, there is little evidence to indicate that higher intake of the n-3 and the n-6 polyunsaturated fatty acids can be beneficial in attenuating adiposity, and the effect of monounsaturated fatty acids on body composition is contradictory. Accordingly, the content of this review summarizes the current body of knowledge on the potential effects of the different types of dietary fatty acids on body composition and adiposity. It also refers to the putative mechanisms underlying this association and reflects on the controversy of this topic.


2020 ◽  
Vol 16 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Natalia Manousi ◽  
Erwin Rosenberg ◽  
George A. Zachariadis ◽  
Victoria F. Samanidou

Background:: Nuts have been incorporated into guidelines for healthy eating since they contain considerable amounts of antioxidants and their effects are related to health benefits since they contribute to the prevention of nutritional deficiencies. The micronutrient characterization is based mainly on the determination of phenolics which is the most abundant class of bioactive compounds in nuts. Terpenes constitute another class of bioactive compounds that are present in nuts and show high volatility. The analysis of phenolic compounds and terpenes are very demanding tasks that require optimization of the chromatographic conditions to improve the separation of the components. Moreover, nuts are rich in unsaturated fatty acids and they are therefore considered as cardioprotective. Gas chromatography is the predominant instrumental analytical technique for the determination of derivatized fatty acids and terpenes in food matrices, while high performance liquid chromatography is currently the most popular technique for the determination of phenolic compounds Objective:: This review summarizes all the recent advances in the optimization of the chromatographic conditions for the determination of phenolic compounds, fatty acids and terpenes in nuts Conclusion:: The state-of-the art in the technology available is critically discussed, exploring new analytical approaches to reduce the time of analysis and improve the performance of the chromatographic systems in terms of precision, reproducibility, limits of detection and quantification and overall quality of the results


Sign in / Sign up

Export Citation Format

Share Document