scholarly journals Process based system models for detecting opportunities and threats – the case of World Cement Production

2016 ◽  
Vol 8 (3) ◽  
pp. 246-262 ◽  
Author(s):  
Raine Isaksson

Purpose Visualising change needs could be complex. One way of sense-making is to use process-based system models. Global warming requires major changes in many fields and especially for cement manufacturing, which represents a growing portion of man-made carbon emissions. The industry has proposed measures for change, but it is difficult to assess how good these are and more sense-making is needed to clarify the situation. The purpose of this paper is to visualise opportunities and threats for global cement manufacturing in the context of global warming, using a process-based system model. Design/methodology/approach Available data for cement manufacturing and for carbon emissions are combined both historically and as predictions based on chosen key performance indicators. These indicators are related to a chosen process-based system model. Findings The results indicate that the global cement industry does not have a viable plan to reduce carbon emissions sufficiently to comply with the objectives of maintaining global warming below 2°C. The application of the process-based system model indicates that it has the ability to visualise important opportunities and threats at the level of global processes. Practical implications The challenges of the world cement industry with reducing carbon emissions are highlighted. This information could be useful as a driver for change. Originality/value The paper provides insights into process-based improvement work related to cement industry carbon emissions.

2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


2017 ◽  
Vol 34 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Sanjeev Shrivastava ◽  
Shrivastava R.L.

Purpose The purpose of this paper is to survey the technical performance of the cement industry including those related to procedures; groundwork of raw materials, fuels and semi-finished products for processing; accessibility of machinery, plant and equipment for various operations; arrangement and process control management. Design/methodology/approach A broad range of survey and research was reviewed, and all revealed the methods to recognize the key influences for development of green technology. The study explores the present scenario of green manufacturing (GM) strategies of Indian cement companies and provides the industrial ecology, ways of reducing energy consumption, environmental impact data collection, design and control of manufacturing systems and integration of product and manufacturing system. It also reveals the problems in decision-making systems owing to the impact of the green product design. Here, in this paper, all information is obtained by the medium of internet, journals, articles, and magazines. Findings This paper describes a problem of global warming, gas, water and other wastages emissions at the time of cement manufacturing and put forward a path that enables decision makers to assess the perception of GM in their organization and in prioritizing GM efforts. Originality/value This perspective survey is to provide an integrative outlook of performance methods for GM practices in the Indian cement industries. It gives important information, which expectantly will help in cement industry to adopt GM practices. This paper fills the gap in the literature on identification, establishment, and validation of performance measures of GM for Indian cement industries.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
MARIJA HADŽI-NIKOLOVA ◽  
DEJAN MIRAKOVSKI ◽  
NIKOLINKA DONEVA ◽  
NATAŠA BAKRESKA

The main environmental issues associated with cement production are the consumption of raw materials, energy use and emissions in the air. Noise emissions occur throughout the whole cement manufacturing process - from preparing and processing raw materials, from the clinker burning and cement production process, from material storage as well as from the dispatch and shipping of the final products. The heavy machinery and large fans used in the cement manufacturing process can give rise to noise emissions. Cement Plants are required to comply with standards for reduction in line with national legislation, and to conduct measurements and perform noise surveys. Having this in mind, A TITAN Group Usje Cement Plant in Skopje, following their strong commitment to high environmental performance and Corporate Social Responsibility and Sustainable Development Policy in 2013-2014 have engaged an AMBICON Lab (Faculty of Natural and Technical Sciences) from Stip, to conduct a Noise Control Study in order to identify noise sources within cement plant and marl quarry, determine their impacts on nearby residents and develop noise control/protection strategies. During the past three years, the Usje Cement plant has implemented most of the noise control measures proposed in this Study. Also, a follow-up study during 2016-2017 was conducted in order to assess the effectiveness of measures taken. This paper presents the outcomes of noise reduction measures taken. Keywords: noise, cement industry, process management, measures, environment


Subject The prospects for global climate governance in 2018. Significance The 2017 UN COP23 Climate Change Conference, chaired by Fiji, ended in the shadow of news that 2017 is expected to see a 2% rise in global carbon emissions. After three years of roughly stable emissions, this estimated increase magnifies the challenge of making the sharp emission reductions needed to meet the Paris Agreement’s goal of keeping global warming to below 2 degrees centigrade above preindustrial levels, even as the renewable energy sector grows and electric vehicle technology makes further progress.


Author(s):  
Haiyan Xie ◽  
Pranshoo Solanki ◽  
Alireza Mojadam ◽  
Wenfang Liu

Cement has a pivotal role in the construction industry. However, cement is one of the key contributors to global CO2 emission levels. This is due to the energy-intensive nature of cement production processes. This comparative-descriptive study focuses on the potential factors to reduce the CO2 emission level in cement production and the decision-making process of adopting new environmental-friendly technology in production. Particularly, this study compares alternative technologies in cement manufacturing to reduce CO2 emission. It collects both the industry data and the data from Texas, which is the biggest contributor to CO2 emission in the US, to analyze how a shift in production technology could affect CO2 emission and eventually improve the outcomes of environment protection and energy efficiency. This paper projects a possible improvement of implementing the method of preheater-precalciner in cement production in lieu of wet and long-dry process to upgrade kilns and reduce problematic CO2 emission. This study suggests shifting from wet and dry kilns to preheater-precalciner systems to obtain the potential benefits of CO2 emission reduction in the cement industry.


2016 ◽  
Vol 27 (2) ◽  
pp. 178-193 ◽  
Author(s):  
Nickolaos Chatziaras ◽  
Constantinos S. Psomopoulos ◽  
Nickolas J. Themelis

Purpose – Cement production has advanced greatly in the last few decades. The traditional fuels used in traditional kilns include coal, oil, petroleum coke, and natural gas. Energy costs and environmental concerns have encouraged cement companies worldwide to evaluate to what extent conventional fuels can be replaced by waste materials, such as waste oils, mixtures of non-recycled plastics and paper, used tires, biomass wastes, and even wastewater sludge. The paper aims to discuss these issues. Design/methodology/approach – The work is based on literature review. Findings – The clinker firing process is well suited for various alternative fuels (AF); the goal is to optimize process control and alternative fuel consumption while maintaining clinker product quality. The potential is enormous since the global cement industry produces about 3.5 billion tons that consume nearly 350 million tons of coal-equivalent fossil and AF. This study has shown that several cement plants have replaced part of the fossil fuel used by AF, such waste recovered fuels. Many years of industrial experience have shown that the use of wastes as AF by cement plants is both ecologically and economically justified. Originality/value – The substitution of fossil fuels by AF in the production of cement clinker is of great importance both for cement producers and for society because it conserves fossil fuel reserves and, in the case of biogenic wastes, reduces greenhouse gas emissions. In addition, the use of AF can help to reduce the costs of cement production.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1111 ◽  
Author(s):  
Mmemek-Abasi Etim ◽  
Kunle Babaremu ◽  
Justin Lazarus ◽  
David Omole

The cement manufacturing industry has played a fundamental role in global economic development, but its production is a major facilitator to anthropogenic CO2 release and solid waste generation. Nigeria has the largest cement industry in West Africa, with an aggregate capacity of 58.9 million metric tonnes (MMT) per year. The Ministry for Mines and Steel Development asserts that the nation possesses total limestone deposits of around 2.3 trillion MT with 568 MMT standing as established reserves and 11 MMT used. Cement industries are largely responsible for releasing air pollutants and effluents into water bodies with apparent water quality deterioration over the years. Air pollution from lime and cement-producing plants is seen as a severe instigator of occupational health hazards and work-related life threats, negatively affecting crop yields, buildings, and persons residing in the vicinity of these industries. World Bank observed in 2015 that 94% of the Nigerian populace is susceptible to air pollutants that surpass WHO guidelines. In 2017, World Bank further reported that 49,100 premature deaths emanated from atmospheric PM2.5, with children beneath age 5 having the greatest vulnerability owing to lower respiratory infections, thereby representing approximately 60% of overall PM2.5-induced deaths. Cement manufacturing involves the significant production of SO2, NOx, and CO connected to adverse health effects on humans. Sensitive populations such as infants, the aged, and persons having underlying respiratory ailments like asthmatics, emphysema, or bronchitis are seen to be most affected. Consequently, in addressing this challenge, growing interests in enacting carbon capture, usage, and storage in the cement industry is expected to alleviate the negative environmental impact of cement production. Still, no carbon capture technology is yet to achieve commercialization in the cement industry. Nonetheless, huge advancement has been made in recent years with the advent of vital research in sorption-enhanced water gas shift, underground gasification combined cycle, ammonium hydroxide solution, and the microbial-induced synthesis of calcite for CO2 capture and storage, all considered sustainable and feasible in cement production.


2019 ◽  
Vol 11 (2) ◽  
pp. 537 ◽  
Author(s):  
Ali Naqi ◽  
Jeong Jang

The cement industry is facing numerous challenges in the 21st century due to depleting natural fuel resources, shortage of raw materials, exponentially increasing cement demand and climate linked environmental concerns. Every tonne of ordinary Portland cement (OPC) produced releases an equivalent amount of carbon dioxide to the atmosphere. In this regard, cement manufactured from locally available minerals and industrial wastes that can be blended with OPC as substitute, or full replacement with novel clinkers to reduce the energy requirements is strongly desirable. Reduction in energy consumption and carbon emissions during cement manufacturing can be achieved by introducing alternative cements. The potential of alternative cements as a replacement of conventional OPC can only be fully realized through detailed investigation of binder properties with modern technologies. Seven prominent alternative cement types are considered in this study and their current position compared to OPC has been discussed. The study provides a comprehensive analysis of options for future cements, and an up-to-date summary of the different alternative fuels and binders that can be used in cement production to mitigate carbon dioxide emissions. In addition, the practicalities and benefits of producing the low-cost materials to meet the increasing cement demand are discussed.


2015 ◽  
Vol 21 (1) ◽  
pp. 2-24 ◽  
Author(s):  
Rameshwar Dubey

Purpose – The purpose of this paper is to study soft total quality management (TQM) practices and their impact on firm performance (FP). Design/methodology/approach – In the present paper, the author has used systematic literature review proposed by Tranfield et al. (2003). After identifying the research gaps, the author has formulated research hypotheses and developed a structured questionnaire to collect data from cement manufacturing firms to test the research hypotheses. In this study the author has used exploratory factor analysis (EFA) to explore latent constructs of soft TQM. The EFA output was further used as an input to multiple linear regression analysis to study their relationship with FP. Findings – The regression analysis indicates that relationship with internal and external partners, quality culture, human resource focus, visionary leadership, are positive and statistically significant determinants of FP. Originality/value – In this study the author has selected Indian cement industry which is world’s second largest cement producer and an important sector in terms of its contribution to Indian GDP, and provides direct and indirect employment opportunities to millions of people. However, most of the studies in India were done related to automotive sector and soft TQM was never considered important. The findings of the study contribute to resource-based theory.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
D. Khairova ◽  
M. Sayfullaeva

The article provides an overview and analysis of the cement industry in Uzbekistan. The authors analyzed the volume of construction work, the volume of production and sales of cement products on the exchange, as well as the target parameters of the production of cement products in 2019–2025. Particular attention is paid to the technological process of cement production, in particular dry and wet methods. The advantages and disadvantages of each production technology are presented in detail. The authors reviewed the existing and projected cement manufacturing enterprises in Uzbekistan.


Sign in / Sign up

Export Citation Format

Share Document