Photonic data rate reduction applied to ultrafast processing for high speed optical links

Author(s):  
Emma Lazzeri ◽  
Piero Castoldi ◽  
Filippo Cugini ◽  
Antonella Bogoni

Author(s):  
Ping Gui ◽  
Fouad Kiamilev ◽  
Xiaoqing Wang ◽  
Michael McFadden ◽  
Charlie Kuznia ◽  
...  

Double data rate (DDR) signaling is widely used in electrical interconnects to eliminate clock recovery and to double communication bandwidth. This paper describes the design of a parallel optical transceiver integrated circuit (IC) that uses source-synchronous, DDR optical signaling. On the transmit side, two 8-bit electrical inputs are multiplexed, encoded and sent over two high-speed optical links. On the receive side, the procedure is reversed to produce two 8-bit electrical outputs. Our IC integrates analog Vertical Cavity Surface Emitting Lasers (VCSEL), drivers and optical receivers with digital DDR multiplexing, serialization, and deserializaton circuits. It was fabricated in a 0.5-micron Silicon-on-Sapphire (SOS) CMOS process. Linear arrays of quad VCSELs and photodetectors were attached to our transceiver IC using flip-chip bonding. A free-space optical link system was constructed to demonstrate correct IC functionality. The test results show successful transceiver operation at a data rate of 500 Mbps with a 250 MHz DDR clock, achieving a gigabit of aggregate bandwidth. While our DDR scheme is well suited for low-skew fiber-ribbon, free-space and waveguide optical links, it can also be extended to links with higher skew with the addition of skew-compensation circuitry. To our knowledge, this is the first demonstration of parallel optical transceivers that use source-synchronous DDR signaling.



Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1873
Author(s):  
Chen Cai ◽  
Xuqiang Zheng ◽  
Yong Chen ◽  
Danyu Wu ◽  
Jian Luan ◽  
...  

This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feed-forward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane's data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB.



2022 ◽  
Vol 17 (01) ◽  
pp. C01040
Author(s):  
C. Zhao ◽  
D. Guo ◽  
Q. Chen ◽  
N. Fang ◽  
Y. Gan ◽  
...  

Abstract This paper presents the design and the test results of a 25 Gbps VCSEL driving ASIC fabricated in a 55 nm CMOS technology as an attempt for the future very high-speed optical links. The VCSEL driving ASIC is composed of an input equalizer stage, a pre-driver stage and a novel output driver stage. To achieve high bandwidth, the pre-driver stage combines the inductor-shared peaking structure and the active-feedback technique. A novel output driver stage uses the pseudo differential CML driver structure and the adjustable FFE pre-emphasis technique to improve the bandwidth. This VCSEL driver has been integrated in a customized optical module with a VCSEL array. Both the electrical function and optical performance have been fully evaluated. The output optical eye diagram has passed the eye mask test at the data rate of 25 Gbps. The peak-to-peak jitter of 25 Gbps optical eye is 19.5 ps and the RMS jitter is 2.9 ps.



2018 ◽  
Vol 7 (4) ◽  
pp. 2569
Author(s):  
Priyanka Chauhan ◽  
Dippal Israni ◽  
Karan Jasani ◽  
Ashwin Makwana

Data acquisition is the most demanding application for the acquisition and monitoring of various sensor signals. The data received are processed in real-time environment. This paper proposes a novel Data Acquisition (DAQ) technique for better resource utilization with less power consumption. Present work has designed and compared advanced Quad Data Rate (QDR) technique with traditional Dual Data Rate (DDR) technique in terms of resource utilization and power consumption of Field Programmable Gate Array (FPGA) hardware. Xilinx ISE is used to verify results of FPGA resource utilization by QDR with state of the art DDR approach. The paper ratiocinates that QDR technique outperforms traditional DDR technique in terms of FPGA resource utilization.  



Author(s):  
Muhammad Bello Abdullahi

Orthogonal Frequency Division Multiplexing (OFDM) is used to achieve multi-carrier signals and high- Speed data rate in free space. OFDM-based systems operate in the hostile multipath radio environment, which allows efficient sharing of limited resources. This research work was designed, developed and simulated an OFDM System using the basic blocks of Simulink in MATLAB/Simulink software, to support multi-carrier, high-speed data rates. This was achieved in backing of collection and review of high-quality research papers, which reported the latest research developments in OFDM communications networks, and its applications in future wireless systems. The research work significantly increases the speed of data rate signals, and many critical problems associated with the applications of OFDM technologies in future wireless systems are still looking for efficient solutions. This would overcome the global issues and challenges facing the limited bandwidth in wireless communication network.





Author(s):  
Azita Emami ◽  
Kuan-Chang Chen ◽  
Arian Hashemi
Keyword(s):  


2015 ◽  
Vol 661 ◽  
pp. 121-127 ◽  
Author(s):  
Yeong Lin Lai ◽  
Wen Jung Chiang

The system in a package (SiP) including of a system on a chip (SoC) and a double-data-rate-three synchronous dynamic random access memory (DDR3 SDRAM) were studied with respect to the high-speed characteristics. The SiP was the multi-chip-module thin-profile fine-pitch ball grid array (MCM TFBGA) package with four-layer substrate. The high-speed 1600-Mbps data rate DDR3 signals were used in the signal integrity (SI) analysis. The SiP with low-cost silver (Ag) wires displayed a 500.18-ps aperture width in the eye diagram, which was successfully achieved signal integrity (SI) performance requirement. This work demonstrated the SiP with the Ag wires was the great potential solution for the advanced high-speed product applications.



1987 ◽  
Author(s):  
A N. Filipov ◽  
B M. Sadler


Sign in / Sign up

Export Citation Format

Share Document