Exergaming: The Impact of Virtual Reality on Cognitive Performance and Player Experience

Author(s):  
Felix Born ◽  
Linda Graf ◽  
Maic Masuch
2021 ◽  
Vol 2 ◽  
Author(s):  
Rachel Doggett ◽  
Elizabeth J. Sander ◽  
James Birt ◽  
Matthew Ottley ◽  
Oliver Baumann

Irrelevant ambient noise can have profound effects on human performance and wellbeing. Acoustic interventions (e.g., installation of sound absorbing materials) that reduce intelligible noise (i.e., sound unrelated to the relevant speech, including noise from other talkers within the space) by reducing room reverberation, have been found to be an effective means to alleviate the negative effects of noise on cognitive performance. However, these interventions are expensive, and it is difficult to evaluate their impact in the field. Virtual reality (VR) provides a promising simulation platform to evaluate the likely impact of varied acoustic interventions before they are chosen and installed. This study employed a virtual classroom environment to evaluate whether an intervention to reduce reverberation can be simulated successfully in VR and mitigate the effects of ambient noise on cognitive performance, physiological stress, and mood. The repeated-measures experimental design consisted of three acoustic conditions: no ambient noise, typical open-plan classroom ambient noise without acoustic treatment, and the same ambient noise with acoustic treatment to reduce reverberation. Results revealed that ambient noise negatively affected participants’ cognitive performance but had no measurable effect on physiological stress or self-reported mood. Importantly, the negative effect of ambient noise was completely ameliorated by the acoustic treatment (i.e. indistinguishable from performance in the no noise condition). The study shows that VR provides an effective and efficient means to evaluate the cognitive effects of acoustic interventions.


Author(s):  
Kristy Martin ◽  
Emily McLeod ◽  
Julien Périard ◽  
Ben Rattray ◽  
Richard Keegan ◽  
...  

Objective: In this review, we detail the impact of environmental stress on cognitive and military task performance and highlight any individual characteristics or interventions which may mitigate any negative effect. Background: Military personnel are often deployed in regions markedly different from their own, experiencing hot days, cold nights, and trips both above and below sea level. In spite of these stressors, high-level cognitive and operational performance must be maintained. Method: A systematic review of the electronic databases Medline (PubMed), EMBASE (Scopus), PsycINFO, and Web of Science was conducted from inception up to September 2018. Eligibility criteria included a healthy human cohort, an outcome of cognition or military task performance and assessment of an environmental condition. Results: The search returned 113,850 records, of which 124 were included in the systematic review. Thirty-one studies examined the impact of heat stress on cognition; 20 of cold stress; 59 of altitude exposure; and 18 of being below sea level. Conclusion: The severity and duration of exposure to the environmental stressor affects the degree to which cognitive performance can be impaired, as does the complexity of the cognitive task and the skill or familiarity of the individual performing the task. Application: Strategies to improve cognitive performance in extreme environmental conditions should focus on reducing the magnitude of the physiological and perceptual disturbance caused by the stressor. Strategies may include acclimatization and habituation, being well skilled on the task, and reducing sensations of thermal stress with approaches such as head and neck cooling.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e043844
Author(s):  
Natalia Araujo ◽  
Samantha Morais ◽  
Ana Rute Costa ◽  
Raquel Braga ◽  
Ana Filipa Carneiro ◽  
...  

IntroductionProstate cancer is the most prevalent oncological disease among men in industrialised countries. Despite the high survival rates, treatments are often associated with adverse effects, including metabolic and cardiovascular complications, sexual dysfunction and, to a lesser extent, cognitive decline. This study was primarily designed to evaluate the trajectories of cognitive performance in patients with prostate cancer, and to quantify the impact of the disease and its treatments on the occurrence of cognitive decline.MethodsParticipants will be recruited from two main hospitals providing care to approximately half of the patients with prostate cancer in Northern Portugal (Portuguese Institute of Oncology of Porto and São João Hospital Centre), and will comprise a cohort of recently diagnosed patients with prostate cancer proposed for different treatment plans, including: (1) radical prostatectomy; (2) brachytherapy and/or radiotherapy; (3) radiotherapy in combination with androgen deprivation therapy and (4) androgen deprivation therapy (with or without chemotherapy). Recruitment began in February 2018 and is expected to continue until the first semester of 2021. Follow-up evaluations will be conducted at 1, 3, 5, 7 and 10 years. Sociodemographic, behavioural and clinical characteristics, anxiety and depression, health literacy, health status, quality of life, and sleep quality will be assessed. Blood pressure and anthropometrics will be measured, and a fasting blood sample will be collected. Participants’ cognitive performance will be evaluated before treatments and throughout follow-up (Montreal Cognitive Assessment and Cube Test as well as Brain on Track for remote monitoring). All participants suspected of cognitive impairment will undergo neuropsychological tests and clinical observation by a neurologist.Ethics and disseminationThe study was approved by the Ethics Committee of the hospitals involved. All participants will provide written informed consent, and study procedures will be developed to ensure data protection and confidentiality. Results will be disseminated through publication in peer-reviewed journals and presentation in scientific meetings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Géraldine Fauville ◽  
Anna C. M. Queiroz ◽  
Erika S. Woolsey ◽  
Jonathan W. Kelly ◽  
Jeremy N. Bailenson

AbstractResearch about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Aidman ◽  
M. Balin ◽  
K. Johnson ◽  
S. Jackson ◽  
G. M. Paech ◽  
...  

AbstractCaffeine is widely used to promote alertness and cognitive performance under challenging conditions, such as sleep loss. Non-digestive modes of delivery typically reduce variability of its effect. In a placebo-controlled, 50-h total sleep deprivation (TSD) protocol we administered four 200 mg doses of caffeine-infused chewing-gum during night-time circadian trough and monitored participants' drowsiness during task performance with infra-red oculography. In addition to the expected reduction of sleepiness, caffeine was found to disrupt its degrading impact on performance errors in tasks ranging from standard cognitive tests to simulated driving. Real-time drowsiness data showed that caffeine produced only a modest reduction in sleepiness (compared to our placebo group) but substantial performance gains in vigilance and procedural decisions, that were largely independent of the actual alertness dynamics achieved. The magnitude of this disrupting effect was greater for more complex cognitive tasks.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara Assecondi ◽  
Rong Hu ◽  
Gail Eskes ◽  
Michelle Read ◽  
Chris Griffiths ◽  
...  

Following publication of the original article [1], the authors flagged that the article had published with the Acknowledgements erroneously excluded from the declarations at the end of the article.


2018 ◽  
Vol 10 ◽  
pp. 117957351881354 ◽  
Author(s):  
Thais Massetti ◽  
Talita Dias da Silva ◽  
Tânia Brusque Crocetta ◽  
Regiani Guarnieri ◽  
Bruna Leal de Freitas ◽  
...  

Background: Virtual reality (VR) experiences (through games and virtual environments) are increasingly being used in physical, cognitive, and psychological interventions. However, the impact of VR as an approach to rehabilitation is not fully understood, and its advantages over traditional rehabilitation techniques are yet to be established. Method: We present a systematic review which was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). During February and March of 2018, we conducted searches on PubMed (Medline), Virtual Health Library Search Portal databases (BVS), Web of Science (WOS), and Embase for all VR-related publications in the past 4 years (2015, 2016, 2017, and 2018). The keywords used in the search were “neurorehabilitation” AND “Virtual Reality” AND “devices.” Results: We summarize the literature which highlights that a range of effective VR approaches are available. Studies identified were conducted with poststroke patients, patients with cerebral palsy, spinal cord injuries, and other pathologies. Healthy populations have been used in the development and testing of VR approaches meant to be used in the future by people with neurological disorders. A range of benefits were associated with VR interventions, including improvement in motor functions, greater community participation, and improved psychological and cognitive function. Conclusions: The results from this review provide support for the use of VR as part of a neurorehabilitation program in maximizing recovery.


Sign in / Sign up

Export Citation Format

Share Document