Board Level Temperature Cycling Reliability of mmWave Modules on Hybrid Substrates

Author(s):  
Laura Wambera ◽  
Karsten Meier ◽  
Karlheinz Bock ◽  
Christian Gotze ◽  
Marcel Wieland
Author(s):  
Gnyaneshwar Ramakrishna ◽  
Donghyun Kim ◽  
Mudasir Ahamad ◽  
Lavanya Gopalakrishnan ◽  
Mason Hu ◽  
...  

Large Flip Chip BGA (FCBGA) packages are needed in high pin out applications (>1800), e.g., ASIC's and are typically used in high reliability and robustness applications. Hence understanding the package reliability and robustness becomes one of paramount importance for efficient product design. There are various aspects to the package that need to be understood, to ensure an effective design. The focus of this paper is to understand the BGA reliability of the package with particular reference to comparison of the surface finish, vis-a`-vis, between Electroless Nickel Immersion Gold (ENIG) and Solder On Pad (SOP) on the substrate side of the package, which are the typical solutions for large plastic FC-BGA packages. Tests, which include board level temperature cycling, monotonic bend and shock testing have been conducted to compare the two surface finish options. The results of these tests demonstrate that the mechanical strength of the interface exceeds by a factor of two for the SOP surface finish, while BGA design parameters play a key role in ensuring comparative temperature cycle reliability in comparison with ENIG packages.


Author(s):  
Guang Ren ◽  
Maurice N. Collins

Abstract: Microstructural and mechanical properties of the eutectic Sn58Bi and micro-alloyed Sn57.6Bi0.4Ag solder alloys were compared. With the addition of Ag micro-alloy, the tensile strength was improved and this is attributed to a combination of microstructure refinement and an Ag3Sn precipitation hardening mechanism. However, ductility is slightly deteriorated due to the brittle nature of the Ag3Sn intermetallic compounds (IMCs). Additionally, a board level reliability study of Ag micro-alloyed Sn58Bi solder joints produced utilising a surface-mount technology (SMT) process, were assessed under accelerated temperature cycling (ATC) conditions. Results reveal that micro-alloyed Sn57.6Bi0.4Ag has a higher characteristic lifetime with a narrower failure distribution. This enhanced reliability corresponds with improved bulk mechanical properties. It is postulated that Ag3Sn IMCs are located at the Sn-Bi phase boundaries and suppress the solder microstructure from coarsening during the temperature cycling, hereby extending the time to failure.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 462 ◽  
Author(s):  
Guang Ren ◽  
Maurice N. Collins

Ag microalloyed Sn58Bi has been investigated in this study as a Pb-free solder candidate to be used in modern electronics industry in order to cope with the increasing demands for low temperature soldering. Microstructural and mechanical properties of the eutectic Sn58Bi and microalloyed Sn57.6Bi0.4Ag solder alloys were compared. With the addition of Ag microalloy, the tensile strength was improved, and this was attributed to a combination of microstructure refinement and an Ag3Sn precipitation hardening mechanism. However, ductility was slightly deteriorated due to the brittle nature of the Ag3Sn intermetallic compounds (IMCs). Additionally, a board level reliability study of Ag microalloyed Sn58Bi solder joints produced utilizing a surface-mount technology (SMT) process, were assessed under accelerated temperature cycling (ATC) conditions. Results revealed that microalloyed Sn57.6Bi0.4Ag had a higher characteristic lifetime with a narrower failure distribution. This enhanced reliability corresponds with improved bulk mechanical properties. It is postulated that Ag3Sn IMCs are located at the Sn–Bi phase boundaries and suppress the solder microstructure from coarsening during the temperature cycling, hereby extending the time to failure.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000409-000417 ◽  
Author(s):  
Natalja Schafet ◽  
Bruno Schrempp ◽  
Manfred Spraul ◽  
Ulrich Becker ◽  
Herbert Güttler

PBGAs with SnPb and SnAgCu (SAC) solder joints were stressed with temperature cycles on board- and system-level. A significant influence of the different solder materials on the location of the most damaged PBGA solder balls was observed in the experiment. The reason for this experimental finding was investigated and explained by FE–simulation. The simulations of the PBGAs were done on package-, board- and system-level (PCB within a metal housing). For the system level simulation a 2-step sub-model technique described in [1] was used. Through such an approach the transient PCB deformation and the transient temperature field within the ECU-housing can be incorporated into a creep simulation of the PBGA solder joints. The creep results for both SnPb and SnAgCu solder joints from the board- and system-level simulation were compared. The calculated damage factor due to the ECU-housing influence is different for PBGA with SnPb and SAC solder joints. The simulation results were validated step by step with measurements and experiments: warpage of the non-soldered PBGA, mechanical strain and temperature on the mounted PCB, crack length evaluation of all PBGA solder joints.


2005 ◽  
Vol 127 (4) ◽  
pp. 496-502 ◽  
Author(s):  
E. H. Wong ◽  
Y-W Mai ◽  
S. K. W. Seah

A fundamental understanding of the dynamics of the PCB assembly when subjected to a half-sine acceleration has also been obtained through analyzing the PCB as a spring mass system, a beam, and a plate, respectively. The magnitude of stresses in solder interconnection due to flexing of the PCB is two orders higher than the magnitude of the stresses induced by acceleration and inertia loading the IC package. By ignoring the inertia loading, computational effort to evaluate the interconnection stresses due to PCB flexing can be reduced significantly via a two-step dynamic-static analysis. The dynamic analysis is first performed to evaluate the PCB bending moment adjacent the package, and is followed by a static analysis where the PCB bending moment is applied around the package. Parametric studies performed suggest a fundamental difference in designing for drop impact and designing for temperature cycling. The well-known design rules for temperature cycling—minimizing package length and maximizing interconnection standoff—does not work for drop impact. Instead, drop impact reliability can be enhanced by increasing the interconnection diameter, reducing the modulus of the interconnection materials, reducing the span of the PCB, or using either a very thin or a very thick PCB.


Sign in / Sign up

Export Citation Format

Share Document