An approach for classification of integrated circuits by a knowledge conserving library concept

Author(s):  
D. Wagenblasst ◽  
W. Thronicke
Keyword(s):  
2004 ◽  
Vol 20 (1) ◽  
pp. 25-37 ◽  
Author(s):  
V. Stopjaková ◽  
P. Malošek ◽  
D. Mičušík ◽  
M. Matej ◽  
M. Margala

2021 ◽  
Vol 14 (3) ◽  
pp. 22-28
Author(s):  
Aleksandr Kozyukov ◽  
Pavel Chubunov ◽  
Konstantin Zolnikov ◽  
Pavel Kuc'ko ◽  
Tatyana Skvortsova ◽  
...  

During the flight, charged particles of outer space act on space systems (orbital stations, spacecraft, interplanetary spacecraft, etc.), which, without the use of special protection measures, can lead to the failure of onboard systems. They are particularly dangerous for systems that use electronic components (semiconductor devices and integrated circuits, optoelectronic devices). These systems in the spacecraft, as a rule, include all control systems, telemetry systems, receiving and transmitting devices, thermal control systems, power supply systems, etc., which in general can be called radio-electronic equipment (REE).


1966 ◽  
Vol 24 ◽  
pp. 21-23
Author(s):  
Y. Fujita

We have investigated the spectrograms (dispersion: 8Å/mm) in the photographic infrared region fromλ7500 toλ9000 of some carbon stars obtained by the coudé spectrograph of the 74-inch reflector attached to the Okayama Astrophysical Observatory. The names of the stars investigated are listed in Table 1.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Author(s):  
Irving Dardick

With the extensive industrial use of asbestos in this century and the long latent period (20-50 years) between exposure and tumor presentation, the incidence of malignant mesothelioma is now increasing. Thus, surgical pathologists are more frequently faced with the dilemma of differentiating mesothelioma from metastatic adenocarcinoma and spindle-cell sarcoma involving serosal surfaces. Electron microscopy is amodality useful in clarifying this problem.In utilizing ultrastructural features in the diagnosis of mesothelioma, it is essential to appreciate that the classification of this tumor reflects a variety of morphologic forms of differing biologic behavior (Table 1). Furthermore, with the variable histology and degree of differentiation in mesotheliomas it might be expected that the ultrastructure of such tumors also reflects a range of cytological features. Such is the case.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Sign in / Sign up

Export Citation Format

Share Document