AFM cantilever array for parallel lithography of quantum devices

Author(s):  
K. Kakushima ◽  
M. Watanabe ◽  
K. Shimamoto ◽  
T. Gouda ◽  
M. Ataka ◽  
...  
2004 ◽  
Vol 43 (6B) ◽  
pp. 4041-4044 ◽  
Author(s):  
Kuniyuki Kakushima ◽  
Toshiyuki Watanabe ◽  
Kouji Shimamoto ◽  
Takushi Gouda ◽  
Manabu Ataka ◽  
...  

2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


1999 ◽  
Author(s):  
Konstantin K. Likharev ◽  
P. Bunyk ◽  
W. Chao ◽  
T. Filippov ◽  
Y. Kameda
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuanjie Chen ◽  
Shaoyun Huang ◽  
Dong Pan ◽  
Jianhong Xue ◽  
Li Zhang ◽  
...  

AbstractA dual-gate InSb nanosheet field-effect device is realized and is used to investigate the physical origin and the controllability of the spin–orbit interaction in a narrow bandgap semiconductor InSb nanosheet. We demonstrate that by applying a voltage over the dual gate, efficiently tuning of the spin–orbit interaction in the InSb nanosheet can be achieved. We also find the presence of an intrinsic spin–orbit interaction in the InSb nanosheet at zero dual-gate voltage and identify its physical origin as a build-in asymmetry in the device layer structure. Having a strong and controllable spin–orbit interaction in an InSb nanosheet could simplify the design and realization of spintronic deceives, spin-based quantum devices, and topological quantum devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 788
Author(s):  
Jian-Huan Wang ◽  
Ting Wang ◽  
Jian-Jun Zhang

Controllable growth of wafer-scale in-plane nanowires (NWs) is a prerequisite for achieving addressable and scalable NW-based quantum devices. Here, by introducing molecular beam epitaxy on patterned Si structures, we demonstrate the wafer-scale epitaxial growth of site-controlled in-plane Si, SiGe, and Ge/Si core/shell NW arrays on Si (001) substrate. The epitaxially grown Si, SiGe, and Ge/Si core/shell NW are highly homogeneous with well-defined facets. Suspended Si NWs with four {111} facets and a side width of about 25 nm are observed. Characterizations including high resolution transmission electron microscopy (HRTEM) confirm the high quality of these epitaxial NWs.


2021 ◽  
Vol 118 (16) ◽  
pp. 162108
Author(s):  
Y. Jin ◽  
M. Moreno ◽  
P. M. T. Vianez ◽  
W. K. Tan ◽  
J. P. Griffiths ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miguel Camacho ◽  
Brian Edwards ◽  
Nader Engheta

AbstractIn the search for improved computational capabilities, conventional microelectronic computers are facing various problems arising from the miniaturization and concentration of active electronics. Therefore, researchers have explored wave systems, such as photonic or quantum devices, for solving mathematical problems at higher speeds and larger capacities. However, previous devices have not fully exploited the linearity of the wave equation, which as we show here, allows for the simultaneous parallel solution of several independent mathematical problems within the same device. Here we demonstrate that a transmissive cavity filled with a judiciously tailored dielectric distribution and embedded in a multi-frequency feedback loop can calculate the solutions of a number of mathematical problems simultaneously. We design, build, and test a computing structure at microwave frequencies that solves two independent integral equations with any two arbitrary inputs and also provide numerical results for the calculation of the inverse of four 5 x 5 matrices.


Sign in / Sign up

Export Citation Format

Share Document