A process technique to engineer the stress of thick doped polysilicon films for MEMS applications

Author(s):  
A. Agarwal ◽  
R. Nagarajan ◽  
J. Singh

Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.



Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.



1993 ◽  
Vol 320 ◽  
Author(s):  
S. P. Murarka

ABSTRACTSilicides have found application as high conductivity, high temperature, and corrosion resistance materials that form good electrical contacts to silicon and good low resistivity cladding on polysilicon films used as gate metal. Of various silicides investigated in past CoSi2 offers several advantages including lowest resistivity, self-aligned formation, low lattice mismatch with silicon, stability in presence of dopants and on SiO2, Si3N4, or Sioxynitrides, and reliability to process temperatures ≤900°C even when used in thicknesses as thin as 50-60 nm. Thus, CoSi2 has found an application in VLSI and ULSI. In this paper, the properties, formation and processing, reliability, and applicability of CoSi2 will be reviewed. It will be shown that CoSi2 is only silicide that offers properties and reliability for continued use in sub-0.25 pm VLSI and ULSI integrated circuits.



1997 ◽  
Vol 505 ◽  
Author(s):  
Xin Zhang ◽  
Tong-Yi Zhang ◽  
Yitshak Zohar

ABSTRACTFEM simulation of micro-rotating-structures was performed for local measurement of residual stresses in thin films. A sensitivity factor is introduced, studied and tabulated from the simulation results. The residual stress can be evaluated from the rotating deflection, the lengths of rotating and fixed beams, and the sensitivity factor. The micro-structure technique was applied to measure residual stresses in both silicon nitride and polysilicon thin films, before and after rapid thermal annealing (RTA), and further confirmed by wafer curvature method. Residual stresses in polysilicon films at different RTA stages were also characterized by micro-Raman spectroscopy (MRS). The experimental results indicate that micro-rotating-structures indeed have the ability to measure spatially and locally residual stresses in MEMS thin films with appropriate sensitivities.





1978 ◽  
Vol 13 (4) ◽  
pp. 472-478 ◽  
Author(s):  
T. Yamaguchi ◽  
K.L. Seaward ◽  
J.L. Sachitano ◽  
S. Sato ◽  
D. Ritchie


1992 ◽  
Vol 276 ◽  
Author(s):  
D-G. Oei ◽  
S. L. McCarthy

ABSTRACTMeasurements of the residual stress in polysilicon films made by Low Pressure Chemical Vapor Deposition (LPCVD) at different deposition pressures and temperatures are reported. The stress behavior of phosphorus (P)-ion implanted/annealed polysilicon films is also reported. Within the temperature range of deposition, 580 °C to 650 °C, the stress vs deposition temperature plot exhibits a transition region in which the stress of the film changes from highly compressive to highly tensile and back to highly compressive as the deposition temperature increases. This behavior was observed in films that were made by the LPCVD process at reduced pressures of 210 and 320 mTORR. At deposition temperatures below 590 °C the deposit is predominantly amorphous, and the film is highly compressive; at temperatures above 610 °C (110) oriented polycrystalline silicon is formed exhibiting high compressive residual stress.



1998 ◽  
Vol 525 ◽  
Author(s):  
M. R. Mirabedini ◽  
V. Z-Q Li ◽  
A. R. Acker ◽  
R. T. Kuehn ◽  
D. Venables ◽  
...  

ABSTRACTIn this work, in-situ doped polysilicon and poly-SiGe films have been used as the gate material for the fabrication of MOS devices to evaluate their respective performances. These films were deposited in an RTCVD system using a Si2H6 and GeH4 gas mixture. MOS capacitors with 45 Å thick gate oxides and polysilicon/poly-SiGe gates were subjected to different anneals to study boron penetration. SIMS analysis and flat band voltage measurements showed much lower boron penetration for devices with poly-SiGe gates than for devices with polysilicon gates. In addition, C-V measurements showed no poly depletion effects for poly-SiGe gates while polysilicon gates had a depletion effect of about 8%. A comparison of resistivities of these films showed a low resistivity of 1 mΩ-cm for poly-SiGe films versus 3 mΩ-cm for polysilicon films after an anneal at 950 °C for 30 seconds.



Sign in / Sign up

Export Citation Format

Share Document