Low-voltage high-curent field emission from a simple pointed graphite emitter tested in a transmission-type X-ray demonstator

Author(s):  
J. Klas ◽  
D. Lutzenkirchen-Hecht ◽  
P. Serbun ◽  
G. Muller
Keyword(s):  
Author(s):  
Tae Hwan Jang ◽  
Tae Gyu Kim ◽  
Mun Ki Bae ◽  
Kyuseok Kim ◽  
Jaegu Choi

In this study, we developed a nanoscale emitter having a multi-layer thin-film nanostructure in an effort to maximize the field-emission effect with a low voltage difference. The emitter was a sapphire board on which tungsten–DLC multi-player thin film was deposited using PVD and CVD processes. This multi-layer thin-film emitter was examined in a high-vacuum X-ray tube system. Its field-emission efficiency according to the applied voltage was then analyzed.


1998 ◽  
Vol 4 (S2) ◽  
pp. 190-191
Author(s):  
Patrick Echlin

Although high resolution (2nm), low voltage (lkV), SEM of bio-organic materials can now be performed more or less routinely using instruments fitted with a field emission source, virtually no low voltage x-ray microanalysis has been carried out on this type of specimen. Boyes and Nockolds showed that quantitative microanalytical information could be obtained from polished inorganic samples at a spatial resolution of l00nm at 5kV and Johnson et al obtained similar type of data at a spatial resolution of 150nm at 3kV. High spatial resolution (l0nm) microanalysis can be achieved in frozen dried or chemically compromised sections of biological material examined at high voltage in the TEM but frozen hydrated chemically unfixed sections are damaged. The other approach is to use the SEM with frozen hydrated, chemically uncompromised samples, usually at about 10-15kV, in order to obtain sufficient signal from the elements of interest which typically lie in the range Na (Z=l 1) to Ca (Z=20).


Author(s):  
J. J Friel ◽  
V. A. Greenhut

Ceramic microstructures are ideally suited for low-voltage field emission microscopy on uncoated samples. Most elements of interest in ceramics have useful X-ray lines below 5 keV, thus permitting the use of accelerating voltages between 3 and 8 kV. One analytical consequence of the use of low voltage is a reduced interaction volume with the electron beam, so that X-ray maps can be collected at submicrometer resolution. To produce usable maps at low voltage, the SEM must be capable of sufficient beam current, and the X-ray detector geometry must be optimal. Another way to optimize X-ray microanalysis is to collect an entire spectrum at every point in the microstructure even at high resolution. Although this capability would permit an X-ray spectrum to be displayed from one pixel, a much more productive approach is to create a spectrum based on all pixels of a particular phase.


1998 ◽  
Vol 4 (S2) ◽  
pp. 254-255
Author(s):  
Raynald Gauvin

Low voltage scanning electron microscopy with a field emission source allows characterization of materials with high spatial resolution. This high resolution comes from the low incident energy which gives a small interaction volume (about 10 nm in Fe at 1 keV ), from the field emission source which gives a small probe size (about 2.5 nm in the most recent FE-SEM) and from virtual, or through the lens, secondary electron detectors with gives high collection efficiency and eliminates some of the SEII and all the SEIII- For example, it has been shown that 10 nm NbC inclusions in steels can be imaged in such FE-SEM at 2 keV (this work was performed with a HITACHI S-4500). However, quantitative x-ray analysis of such precipitates are difficult because the critical ionization energy of the Nb Lα lines is equal to 2.37 keV, an incident electron energy of at least 5 keV must be used to get significant x-ray counts rates.


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Terrence W. Reilly

Although the first commercial scanning electron microscope (SEM) was introduced in 1965, the limited resolution and the lack of preparation techniques initially confined biological observations to relatively low magnification images showing anatomical surface features of samples that withstood the artifacts associated with air drying. As the design of instrumentation improved and the techniques for specimen preparation developed, the SEM allowed biologists to gain additional insights not only on the external features of samples but on the internal structure of tissues as well. By 1985, the resolution of the conventional SEM had reached 3 - 5 nm; however most biological samples still required a conductive coating of 20 - 30 nm that prevented investigators from approaching the level of information that was available with various TEM techniques. Recently, a new SEM design combined a condenser-objective lens system with a field emission electron source.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Author(s):  
Y. Sato ◽  
T. Hashimoto ◽  
M. Ichihashi ◽  
Y. Ueki ◽  
K. Hirose ◽  
...  

Analytical TEMs have two variations in x-ray detector geometry, high and low angle take off. The high take off angle is advantageous for accuracy of quantitative analysis, because the x rays are less absorbed when they go through the sample. The low take off angle geometry enables better sensitivity because of larger detector solid angle.Hitachi HF-2000 cold field emission TEM has two versions; high angle take off and low angle take off. The former allows an energy dispersive x-ray detector above the objective lens. The latter allows the detector beside the objective lens. The x-ray take off angle is 68° for the high take off angle with the specimen held at right angles to the beam, and 22° for the low angle take off. The solid angle is 0.037 sr for the high angle take off, and 0.12 sr for the low angle take off, using a 30 mm2 detector.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


Sign in / Sign up

Export Citation Format

Share Document