Ballistic Transport in High-Performance and Low-Power Sub-5 nm Two-Dimensional ZrNBr MOSFETs

2020 ◽  
Vol 41 (7) ◽  
pp. 1029-1032 ◽  
Author(s):  
Hengze Qu ◽  
Shengli Zhang ◽  
Wenhan Zhou ◽  
Shiying Guo ◽  
Haibo Zeng
Lab on a Chip ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1633-1643 ◽  
Author(s):  
Joshua J. Whiting ◽  
Edward Myers ◽  
Ronald P. Manginell ◽  
Mathew W. Moorman ◽  
John Anderson ◽  
...  

A microfabricated ultrafast GC×GC system, coupled with highly sensitive, low-power NEMS resonators, with handheld form factor for civilian, military, and space applications.


2021 ◽  
Vol 119 (16) ◽  
pp. 163504
Author(s):  
Boyu Wang ◽  
Jing Ning ◽  
Jincheng Zhang ◽  
Dong Wang ◽  
Xinyi Yang ◽  
...  

2014 ◽  
Vol 2014 (1) ◽  
pp. 000242-000246 ◽  
Author(s):  
Y. Kawase ◽  
M. Ikemoto ◽  
M. Sugiyama ◽  
H. Kiritani ◽  
F. Mizutani ◽  
...  

For the conventional two dimensional (2D) packaging of integrated circuit (IC), reflow and capillary under fill have been used for more than a decade. But for the purpose of low power and high performance of IC, three dimensional IC (3D-IC) have been proposed in recent years. In case of 3D-IC, both bump pitches and gaps between stacked thin chips should be fine and narrow, so that pre-applied inter chip fill (ICF) which is applied in thermal compression bonding have been proposed. In this process, not only low viscosity but also thermal conductivity is simultaneously required. In this study, some of selected epoxy based matrix and filler were simulated and evaluated for pre-applied ICF, we confirmed its process applicability to pre-applied chip bonding. Physical characteristics of cured ICF and void-less joining were also discussed.


2017 ◽  
Author(s):  
Varun Bheemireddy

The two-dimensional(2D) materials are highly promising candidates to realise elegant and e cient transistor. In the present letter, we conjecture a novel co-planar metal-insulator-semiconductor(MIS) device(capacitor) completely based on lateral 2D materials architecture and perform numerical study of the capacitor with a particular emphasis on its di erences with the conventional 3D MIS electrostatics. The space-charge density features a long charge-tail extending into the bulk of the semiconductor as opposed to the rapid decay in 3D capacitor. Equivalently, total space-charge and semiconductor capacitance densities are atleast an order of magnitude more in 2D semiconductor. In contrast to the bulk capacitor, expansion of maximum depletion width in 2D semiconductor is observed with increasing doping concentration due to lower electrostatic screening. The heuristic approach of performance analysis(2D vs 3D) for digital-logic transistor suggest higher ON-OFF current ratio in the long-channel limit even without third dimension and considerable room to maximise the performance of short-channel transistor. The present results could potentially trigger the exploration of new family of co-planar at transistors that could play a signi significant role in the future low-power and/or high performance electronics.<br>


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Author(s):  
Hiroyuki Hakoi ◽  
Ming Ni ◽  
Junichi Hashimoto ◽  
Takashi Sato ◽  
Shinji Shimada ◽  
...  

Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


Sign in / Sign up

Export Citation Format

Share Document