scholarly journals A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph

Lab on a Chip ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1633-1643 ◽  
Author(s):  
Joshua J. Whiting ◽  
Edward Myers ◽  
Ronald P. Manginell ◽  
Mathew W. Moorman ◽  
John Anderson ◽  
...  

A microfabricated ultrafast GC×GC system, coupled with highly sensitive, low-power NEMS resonators, with handheld form factor for civilian, military, and space applications.

2019 ◽  
Vol 69 (3) ◽  
pp. 217-222 ◽  
Author(s):  
Srinivas Sabbavarapu ◽  
Amit Acharyya ◽  
P. Balasubramanian ◽  
C. Ramesh Reddy

In the recent years the advancement in the field of microelectronics integrated circuit (IC) design technologies proved to be a boon for design and development of various advanced systems in-terms of its reduction in form factor, low power, high speed and with increased capacity to incorporate more designs. These systems provide phenomenal advantage for armoured fighting vehicle (AFV) design to develop miniaturised low power, high performance sub-systems. One such emerging high-end technology to be used to develop systems with high capabilities for AFVs is discussed in this paper. Three dimensional IC design is one of the emerging field used to develop high density heterogeneous systems in a reduced form factor. A novel grouping based partitioning and merge based placement (GPMP) methodology for 3D ICs to reduce through silicon vias (TSVs) count and placement time is proposed. Unlike state-of-the-art techniques, the proposed methodology does not suffer from initial overlap of cells during intra-layer placement which reduces the placement time. Connectivity based grouping and partitioning ensures less number of TSVs and merge based placement further reduces intra layer wire-length. The proposed GPMP methodology has been extensively against the IBMPLACE database and performance has been compared with the latest techniques resulting in 12 per cent improvement in wire-length, 13 per cent reduction in TSV and 1.1x improvement in placement time.


Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


2013 ◽  
Vol 1538 ◽  
pp. 291-302
Author(s):  
Edward Yi Chang ◽  
Hai-Dang Trinh ◽  
Yueh-Chin Lin ◽  
Hiroshi Iwai ◽  
Yen-Ku Lin

ABSTRACTIII-V compounds such as InGaAs, InAs, InSb have great potential for future low power high speed devices (such as MOSFETs, QWFETs, TFETs and NWFETs) application due to their high carrier mobility and drift velocity. The development of good quality high k gate oxide as well as high k/III-V interfaces is prerequisite to realize high performance working devices. Besides, the downscaling of the gate oxide into sub-nanometer while maintaining appropriate low gate leakage current is also needed. The lack of high quality III-V native oxides has obstructed the development of implementing III-V based devices on Si template. In this presentation, we will discuss our efforts to improve high k/III-V interfaces as well as high k oxide quality by using chemical cleaning methods including chemical solutions, precursors and high temperature gas treatments. The electrical properties of high k/InSb, InGaAs, InSb structures and their dependence on the thermal processes are also discussed. Finally, we will present the downscaling of the gate oxide into sub-nanometer scale while maintaining low leakage current and a good high k/III-V interface quality.


Author(s):  
GOPALA KRISHNA.M ◽  
UMA SANKAR.CH ◽  
NEELIMA. S ◽  
KOTESWARA RAO.P

In this paper, presents circuit design of a low-power delay buffer. The proposed delay buffer uses several new techniques to reduce its power consumption. Since delay buffers are accessed sequentially, it adopts a ring-counter addressing scheme. In the ring counter, double-edge-triggered (DET) flip-flops are utilized to reduce the operating frequency by half and the C-element gated-clock strategy is proposed. Both total transistor count and the number of clocked transistors are significantly reduced to improve power consumption and speed in the flip-flop. The number of transistors is reduced by 56%-60% and the Area-Speed-Power product is reduced by 56%-63% compared to other double edge triggered flip-flops. This design is suitable for high-speed, low-power CMOS VLSI design applications.


1990 ◽  
Vol 01 (02) ◽  
pp. 153-167
Author(s):  
TZU-YIN CHIU ◽  
PING K. KO

The merits of high speed bipolar and low power VLSI CMOS are combined in BiCMOS technology. Designers are exploiting additional dimensions of flexibility and are implementing aggressive high performance systems not achievable before. Various approaches to BiCMOS integration, spanning from a single mask addition to sophisticated fully self-aligned device structures, are reviewed in this article. The philosophies behind the technology evolution in the last five years are discussed. We have also ventured to extrapolate future BiCMOS technology trend and applications.


2016 ◽  
Vol 26 (02) ◽  
pp. 1750030 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajender Kumar Sharma

To develop low-power, high-speed and area-efficient design for portable electronics devices and signal processing applications is a very challenging task. Multiplier has an important role in digital signal processing. Reducing the power consumption of multiplier will bring significant power reduction and other associated advantages in the overall digital system. In this paper, a low-power and area-efficient two-dimensional bypassing multiplier is presented. In two-dimensional bypassing, row and column are bypassed and thus the switching power is saved. Simulation results are realized using UMC 90[Formula: see text]nm CMOS technology and 0.9[Formula: see text]V, with Cadence Spectre simulation tool. The proposed architecture is compared with the existing multiplier architectures, i.e., Braun’s multiplier, row bypassing multiplier, column bypassing multiplier and row and column bypassing multiplier. Performance parameters of the proposed multiplier are better than the existing multipliers in terms of area occupation, power dissipation and power-delay product. These results are obtained for randomly generated input test patterns having uniform distribution probability.


2021 ◽  
Vol 7 (3) ◽  
pp. 22-26
Author(s):  
Hai P. Le ◽  
◽  
Aladin Azyegh ◽  
Jugdutt Singh ◽  
◽  
...  

Data acquisition (DAQ) in the general sense is the process of collecting information from the real world. For engineers and scientists, this data is mostly numerical and is usually collected, stored and analysed using computers. However, most of the input signals cannot be read directly by digital computers. Because they are generally analog signals distinguished by continuous values, while computers can only recognise digital signals containing only the on/off levels. DAQ systems are therefore inevitably necessary, as they include the translation requirements from analog signals to digital data. For this reason, they have become significant in wide range of applications in modern science and technology [1]. The paper precents the disign of a 12-bit high-speed low-power Data Acquisition (DAQ) Chip. In this paper, the disigns of the building block components are aimed at high-accuracy along with high-speed and low power dissipation. A modifided flash Analog-to-Digital converter (ADC) was used instead of the traditional flash proposed DAQ chip operates at 1 GHz master clock frequency and achieves a sampling speed of 125 MS/s. It dissipates only 64.9 mW of power as compared to 97.2 mW when traditional flash ADC was used.


Sign in / Sign up

Export Citation Format

Share Document