A 28 nW CMOS supply voltage monitor for adaptive ultra-low power IoT chips

Author(s):  
Divya Akella Kamakshi ◽  
Harsh N. Patel ◽  
Abhishek Roy ◽  
Benton H. Calhoun
2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 183-192
Author(s):  
Muhammad Yasir Faheem ◽  
Shun'an Zhong ◽  
Xinghua Wang ◽  
Muhammad Basit Azeem

Purpose Successive approximation register (SAR) analogue to digital converter (ADC) is well-known with regard to low-power operations. To make it energy-efficient and time-efficient, scientists are working for the last two decades, and it still needs the attention of the researchers. In actual work, there is no mechanism and circuitry for the production of two simultaneous comparator outputs in SAR ADC. Design/methodology/approach A small-sized, low-power and energy-efficient circuitry of a dual comparator and an amplifier is presented, which is the most important part of SAR ADC. The main idea is to design a multi-dimensional circuit which can deliver two quick parallel comparisons. The circuitry of the three devices is combined and miniaturized by introducing a lower number of MOSFET’s and small-sized capacitors in such a way that there is no need for any matching and calibration. Findings The supply voltage of the proposed comparator is 0.7 V with the overall power consumption of 0.257mW. The input and clock frequencies are 5 and 50 MHz, respectively. There is no requirement for any offset calibration and mismatching concerns due to sharing and centralization of spider-latch circuitry. The total offset voltages are 0.13 0.31 mV with 0.3VDD to VDD. All the components are small-sized and miniaturized to make the circuit cost-effective and energy-efficient. The rise and response time of comparator is around 100 ns. SNDR improved from 56 to 65 dB where the input-referred noise of an amplifier is 98mVrms. Originality/value The proposed design has no linear-complexity compared with the conventional comparator in both modes (working and standby); it is ultimately intended and designed for 11-bit SAR ADC. The circuit based on three rapid clock pulses for three different modes includes amplification and two parallel comparisons controlled and switched by a latch named as “spider-latch”.


2020 ◽  
Vol 40 (1) ◽  
pp. 1-6
Author(s):  
Jie Jin ◽  
Xianming Wu ◽  
Zhijun Li

An ultra low power mixer with out-of-band radio frequency (RF) energy harvesting suitable for the wireless sensors network (WSN) application is proposed in this paper. The presented mixer is able to harvest the out-of-band RF energy and keep it working in ultra low power condition and extend the battery life of the WSN. The mixer is designed and simulated with Global Foundries ’ 0.18 μ m CMOS RF process, and it operates at 2.4GHz industrial, scientific, and medical (ISM) band. The Cadence IC Design Tools post-layout simulation results demonstrate that the proposed mixer consumes 248 μ W from a 1V supply voltage. Furthermore, the power consumption can be reduced to 120.8 μ W by the out-of-band RF energy harvesting rectifier.


2019 ◽  
Vol 28 (07) ◽  
pp. 1950122 ◽  
Author(s):  
Imen Ghorbel ◽  
Fayrouz Haddad ◽  
Wenceslas Rahajandraibe ◽  
Mourad Loulou

A design methodology of CMOS LC voltage-controlled oscillator (VCO) is proposed in this paper. The relation between components and specifications of the LC-VCO is studied to easily identify its design trade-offs. This methodology has been applied to design ultra-low-power LC-VCOs for different frequency bands. An LC-VCO based on the current reuse technique has been realized with the proposed methodology in 0.13[Formula: see text][Formula: see text]m CMOS process. Measurements present an ultra-low power consumption of only 262[Formula: see text][Formula: see text]W drawn from 1[Formula: see text]V supply voltage. The measured frequency tuning range is about 10% between 2.179[Formula: see text]GHz and 2.409[Formula: see text]GHz. The post-layout simulation presents a phase noise (PN) of [Formula: see text][Formula: see text]dBc/Hz, while the measured PN is [Formula: see text][Formula: see text]dBc/Hz.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1287
Author(s):  
Alessandro Bertacchini ◽  
Marco Lasagni ◽  
Gabriele Sereni

The demand for smart, low-power, and low-cost sensors is rapidly increasing with the proliferation of industry automation. In this context, an Ultra-Low Power Eddy Current Displacement Sensor (ULP-ECDS) targeting common industrial applications and designed to be embedded in wireless Industrial Internet of Things (IIoT) devices is presented. A complete characterization of the realized ULP-ECDS operating with different metallic targets was carried out. The choice of the considered targets in terms of material and thickness was inspired by typical industrial scenarios. The experimental results show that the realized prototype works properly with extremely low supply voltages, allowing for obtaining an ultra-low power consumption, significantly lower than other state-of-the-art solutions. In particular, the proposed sensor reached the best resolution of 2 µm in case of a carbon steel target when operated with a supply voltage of 200 mV and with a power consumption of 150 µW. By accepting a resolution of 12 µm, it is possible to further reduce the power consumption of the sensor to less than 10 µW. The obtained results also demonstrate how the performances of the sensor are strongly dependent on both the target and the demodulation technique used to extract the displacement information. This allowed for defining some practical guidelines that can help the design of effective solutions considering application-specific constraints.


2020 ◽  
Vol 10 (4) ◽  
pp. 457-470 ◽  
Author(s):  
Dipanjan Sen ◽  
Savio J. Sengupta ◽  
Swarnil Roy ◽  
Manash Chanda ◽  
Subir K. Sarkar

Aims:: In this work, a Junction-Less Double Gate MOSFET (JLDG MOSFET) based CMOS inverter circuit is proposed for ultra-low power applications in the near and sub-threshold regime operations. Background:: D.C. performances like power, delay and voltage swing of the proposed Inverter have been modeled analytically and analyzed in depth. JLDG MOSFET has promising features to reduce the short-channel effects compared to the planner MOSFET because of better gate control mechanism. So, proposed Inverter would be efficacious to offer less power dissipation and higher speed. Objective:: Impact of supply voltage, temperature, High-k gate oxide, TOX, TSI on the power, delay and voltage swing of the Inverter circuits have been detailed here. Methods: Extensive simulations using SILVACO ATLAS have been done to validate the proposed logic based digital circuits. Besides, the optimum supply voltage has been modelled and verified through simulation for low voltage operations. In depth analysis of voltage swing is added to measure the noise immunity of the proposed logic based circuits in Sub & Near-threshold operations. For ultra-low power operation, JLDG MOSFET can be an alternative compared to conventional planar MOSFET. Result:: Hence, the analytical model of delay, power dissipation and voltage swing have been proposed of the proposed logic based circuits. Besides, the ultra-low power JLDG CMOS inverter can be an alternative in saving energy, reduction of power consumption for RFID circuit design where the frequency range is a dominant factor. Conclusion:: The power consumption can be lowered in case of UHF, HF etc. RF circuits using the Double Gate Junction-less MOSFET as a device for circuit design.


Sign in / Sign up

Export Citation Format

Share Document