Investigation of quantum-capacitance induced drain-current loss for multi-gate InGaAs n-MOSFETs

Author(s):  
Hsin-Hung Shen ◽  
Chang-Hung Yu ◽  
Pin Su
2021 ◽  
Author(s):  
MUNINDRA MUNINDRA ◽  
DEVA NAND

Abstract A simple, compact, and fundamental physics-based quasi-analytic model for Single layer graphene field effect transistors (GFETs) with large area graphene is presented in which the quantum mechanical density gradient method is utilised. The basic device physics of the two-dimensional (2D) graphene channel is studied analytically. This modeling leads to the precise drain current calculation of the GFETs. The drain current calculation for GFETs starts from charge carrier concentration, its density of states and quantum capacitance(QC). QC depends on the channel voltage as a function of gate to source voltage Vgs and drain to source voltage Vds primarily. The formulation of the drain current with velocity saturation has been done by the Monte Carlo simulation method. The performance of the analytical GFETs model is present the precise values of QC, its impact on drain current and transfer as well as output characteristics. The impact of QC at nanometer technology adds the nonlinearity to characteristics curves. The proposed method provides better results as compared with the previous analytical and simulated results.


1988 ◽  
Vol 49 (C4) ◽  
pp. C4-223-C4-226 ◽  
Author(s):  
G. POST ◽  
P. DIMITRIOU ◽  
A. FALCOU ◽  
N. DUHAMEL ◽  
G. MERMANT

2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2009 ◽  
Vol 129 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Katsumi Yamazaki ◽  
Yuji Kanou ◽  
Yu Fukushima ◽  
Shunji Ohki ◽  
Akira Nezu ◽  
...  

2003 ◽  
Vol 771 ◽  
Author(s):  
Michael C. Hamilton ◽  
Sandrine Martin ◽  
Jerzy Kanicki

AbstractWe have investigated the effects of white-light illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs). The OFF-state drain current is significantly increased, while the drain current in the strong accumulation regime is relatively unaffected. At the same time, the threshold voltage is decreased and the subthreshold slope is increased, while the field-effect mobility of the charge carriers is not affected. The observed effects are explained in terms of the photogeneration of free charge carriers in the channel region due to the absorbed photons.


2021 ◽  
Vol 14 (1) ◽  
pp. 014003
Author(s):  
Shahab Mollah ◽  
Kamal Hussain ◽  
Abdullah Mamun ◽  
Mikhail Gaevski ◽  
Grigory Simin ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 291-297
Author(s):  
Hind Jaafar ◽  
Abdellah Aouaj ◽  
Ahmed Bouziane ◽  
Benjamin Iñiguez

Background: A novel Dual Material Gate Graded Channel and Dual Oxide Thickness Cylindrical Gate (DMG-GC-DOT) MOSFET is presented in this paper. Methods: Analytical model of drain current is developed using a quasi-two-dimensional cylindrical form of the Poisson equation and is expressed as a function of the surface potential, which is calculated using the expressions of the current density. Results: Comparison of the analytical results with 3D numerical simulations using Silvaco Atlas - TCAD software presents a good agreement from subthreshold to strong inversion regime and for different bias voltages. Conclusion: Two oxide thicknesses with different permittivity can effectively improve the subthreshold current of DMG-GC-DOT MOSFET.


1995 ◽  
Vol 31 (21) ◽  
pp. 1875-1876 ◽  
Author(s):  
P.H. Ladbrooke ◽  
A.K. Jastrzebski ◽  
J.P. Bridge ◽  
R.J. Donarski ◽  
J.E. Barnaby
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document