Perichromatin fibrils as early markers of transcriptional alterations

2008 ◽  
Vol 76 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Marco Biggiogera ◽  
Barbara Cisterna ◽  
Alessandro Spedito ◽  
Lorella Vecchio ◽  
Manuela Malatesta
Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


2021 ◽  
Vol 10 (4) ◽  
pp. 853
Author(s):  
Giuseppe Privitera ◽  
Daniela Pugliese ◽  
Gian Ludovico Rapaccini ◽  
Antonio Gasbarrini ◽  
Alessandro Armuzzi ◽  
...  

Inflammatory bowel diseases (IBD) are chronic conditions that primarily affect the gastrointestinal tract, with a complex pathogenesis; they are characterized by a significant heterogeneity of clinical presentations and of inflammatory pathways that sustain intestinal damage. After the introduction of the first biological therapies, the pipeline of therapies for IBD has been constantly expanding, and a significant number of new molecules is expected in the next few years. Evidence from clinical trials and real-life experiences has taught us that up to 40% of patients do not respond to a specific drug. Unfortunately, to date, clinicians lack a valid tool that can predict each patient’s response to therapies and that could help them in choosing what drug to administer. Several candidate biomarkers have been investigated so far, with conflicting results: clinical, genetic, immunological, pharmacokinetic and microbial markers have been tested, but no ideal marker has been identified so far. Based on recent evidence, multiparametric models seemingly hold the greatest potential for predicting response to therapy. In this narrative review, we aim to summarize the current knowledge on predictors and early markers of response to biological therapies in IBD.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Heather E. Volk ◽  
Bo Park ◽  
Calliope Hollingue ◽  
Karen L. Jones ◽  
Paul Ashwood ◽  
...  

Abstract Background Perinatal exposure to air pollution and immune system dysregulation are two factors consistently associated with autism spectrum disorders (ASD) and other neurodevelopmental outcomes. However, little is known about how air pollution may influence maternal immune function during pregnancy. Objectives To assess the relationship between mid-gestational circulating levels of maternal cytokines/chemokines and previous month air pollution exposure across neurodevelopmental groups, and to assess whether cytokines/chemokines mediate the relationship between air pollution exposures and risk of ASD and/or intellectual disability (ID) in the Early Markers for Autism (EMA) study. Methods EMA is a population-based, nested case–control study which linked archived maternal serum samples collected during weeks 15–19 of gestation for routine prenatal screening, birth records, and Department of Developmental Services (DDS) records. Children receiving DDS services for ASD without intellectual disability (ASD without ID; n = 199), ASD with ID (ASD with ID; n = 180), ID without ASD (ID; n = 164), and children from the general population (GP; n = 414) with no DDS services were included in this analysis. Serum samples were quantified for 22 cytokines/chemokines using Luminex multiplex analysis technology. Air pollution exposure for the month prior to maternal serum collection was assigned based on the Environmental Protection Agency’s Air Quality System data using the maternal residential address reported during the prenatal screening visit. Results Previous month air pollution exposure and mid-gestational maternal cytokine and chemokine levels were significantly correlated, though weak in magnitude (ranging from − 0.16 to 0.13). Ten pairs of mid-pregnancy immune markers and previous month air pollutants were significantly associated within one of the child neurodevelopmental groups, adjusted for covariates (p < 0.001). Mid-pregnancy air pollution was not associated with any neurodevelopmental outcome. IL-6 remained associated with ASD with ID even after adjusting for air pollution exposure. Conclusion This study suggests that maternal immune activation is associated with risk for neurodevelopmental disorders. Furthermore, that prenatal air pollution exposure is associated with small, but perhaps biologically relevant, effects on maternal immune system function during pregnancy. Additional studies are needed to better evaluate how prenatal exposure to air pollution affects the trajectory of maternal immune activation during pregnancy, if windows of heightened susceptibility can be identified, and how these factors influence neurodevelopment of the offspring.


2021 ◽  
Vol 22 (14) ◽  
pp. 7666
Author(s):  
Sara C. Credendino ◽  
Marta De Menna ◽  
Irene Cantone ◽  
Carmen Moccia ◽  
Matteo Esposito ◽  
...  

Forkhead box E1 (FOXE1) is a lineage-restricted transcription factor involved in thyroid cancer susceptibility. Cancer-associated polymorphisms map in regulatory regions, thus affecting the extent of gene expression. We have recently shown that genetic reduction of FOXE1 dosage modifies multiple thyroid cancer phenotypes. To identify relevant effectors playing roles in thyroid cancer development, here we analyse FOXE1-induced transcriptional alterations in thyroid cells that do not express endogenous FOXE1. Expression of FOXE1 elicits cell migration, while transcriptome analysis reveals that several immune cells-related categories are highly enriched in differentially expressed genes, including several upregulated chemokines involved in macrophage recruitment. Accordingly, FOXE1-expressing cells induce chemotaxis of co-cultured monocytes. We then asked if FOXE1 was able to regulate macrophage infiltration in thyroid cancers in vivo by using a mouse model of cancer, either wild type or with only one functional FOXE1 allele. Expression of the same set of chemokines directly correlates with FOXE1 dosage, and pro-tumourigenic M2 macrophage infiltration is decreased in tumours with reduced FOXE1. These data establish a novel link between FOXE1 and macrophages recruitment in the thyroid cancer microenvironment, highlighting an unsuspected function of this gene in the crosstalk between neoplastic and immune cells that shape tumour development and progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca A. Dagg ◽  
Gijs Zonderland ◽  
Emilia Puig Lombardi ◽  
Giacomo G. Rossetti ◽  
Florian J. Groelly ◽  
...  

AbstractBRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells. RNA-seq analyses revealed β-catenin-induced discrete transcriptome alterations in BRCA2-deficient cells, including suppression of CDKN1A gene encoding the CDK inhibitor p21. This accelerates G1/S transition, triggering illegitimate origin firing and DNA damage. In addition, β-catenin activation accelerates replication fork progression in BRCA2-deficient cells, which is critically dependent on p21 downregulation. Importantly, we find that upregulated p21 expression is essential for the survival of BRCA2-deficient cells and tumours. Thus, our work demonstrates that β-catenin toxicity in cancer cells with compromised BRCA1/2 function is driven by transcriptional alterations that cause aberrant replication and inflict DNA damage.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Iman Akhlaghipour ◽  
Amir Reza Bina ◽  
Mohammad Reza Abbaszadegan ◽  
Meysam Moghbeli

AbstractCancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer incidence and mortality have a growing trend during last decades among Iranian population which are significantly related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression. Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review we have summarized all of the aberrant methylations which have been reported during tumor progression among Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific panel of diagnostic markers for the early detection of cancer among Iranians.


Sign in / Sign up

Export Citation Format

Share Document