scholarly journals MECHANICAL PROPERTIES OF GIGANTOCHLOA SCORTECHINII BAMBOO PARTICLE REINFORCED SEMIRIGID POLYVINYL CHLORIDE COMPOSITES

2020 ◽  
Vol 82 (2) ◽  
Author(s):  
Siti Atiqa Al Zahra Mat Darus ◽  
Mariyam Jameelah Ghazali ◽  
Che Husna Azhari ◽  
Rozli Zulkifli ◽  
Ahmad Adlie Shamsuri

This investigation aims to study the mechanical properties of the bamboo particle (BP) (Gigantochloa scortechinii) reinforced with semirigid Polyvinyl Chloride (PVC) composites before and after the steam explosion (SE)-alkali treatment. Mechanical properties, namely, tensile, flexural and impact strengths, were determined using universal tensile and impact testing machines according to ASTM standard. The tensile and flexural strengths of the composites were improved after SE-alkali treatment. Results indicated that the tensile and flexural strengths of the composites increased and reached the optimum values of 17.42 and 11.86 MPa, respectively for SE-alkali treatment BP reinforced semirigid PVC with 40 wt% particle content. The impact strength of SE-alkali-treated composites was unimproved due to less dense and rigid particle.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


2011 ◽  
Vol 197-198 ◽  
pp. 1100-1103
Author(s):  
Jian Li

A polyurethane/clay (PU/clay) composite was synthesized. The microstructure of the composite was examined by scanning electron microscopy. The impact properties of the composite were characterized by impact testing. The study on the structure of the composite showed that clays could be dispersed in the polymer matrix well apart from a few of clusters. The results from mechanical analysis indicated that the impact properties of the composite were increased greatly in comparison with pure polyurethane. The investigation on the mechanical properties showed that the impact strength could be obviously increased by adding 20 wt% (by weight) clay to the matrix.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 295
Author(s):  
Shilei Li ◽  
Yanli Wang ◽  
Xitao Wang

The influence of Mo additions on the mechanical properties of cast duplex stainless steel (CDSS) before and after thermal aging was investigated using a series of model alloys with different Mo contents ranging from 0 to 1.75 wt%. By increasing Mo content, the content, morphology, and distribution of ferrite in CDSS change significantly. After thermal aging at 400 °C for 3000 h, the impact properties of all CDSS specimens obviously decline, and their hardness values in ferrite significantly increase. The impact energies of the aged CDSS decline, and the proportion of cleavage features significantly increases with Mo content increasing. The spinodal decomposition kinetics in ferrite is not significantly affected by the Mo contents. High content and interconnected ferrite will lead to the severe embrittlement in CDSS after thermal aging.


2011 ◽  
Vol 217-218 ◽  
pp. 1170-1173
Author(s):  
Wei Wei Qiao ◽  
Hui Wang ◽  
Yan Hua Zhao ◽  
Yi Xia Han

We investigate the mechanical properties of Poly Vinyl Chloride (PVC)/ acrylnitrile-butadiene-styrene copolymer (ABS) composite material with an impact testing machine,a material testing machine and other accessory devices. The result shows that the mechanical properties of PVC/ABS composite are a function of composition, the addition of ABS improved the mechanical properties of PVC/ ABS composite,the impact strength and elongation at break rise significantly with increasing ABS content in PVC/ABS composite and appears maximum value,While the tensile strength and modulus almost decrease monotonously with increasing ABS content in PVC/ABS composite.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2010 ◽  
Vol 37-38 ◽  
pp. 1092-1100
Author(s):  
Ji Bin Li ◽  
Ke Ke Xu ◽  
Xin Bo Lin ◽  
Xiao Yu Wu ◽  
Guo Li Gao

In this paper, ultrasonic vibration is adopted and exerted on injection molding in order to improve plastics’ forming ability, and the impact testing is used to analyze different injection parts’ mechanical properties. On the one hand, experiments prove that ultrasonic vibration can increase polymer’s melt flow rate, decrease melt viscosity, and improve injection flowing in mould cavity. On the other hand, the mechanical tests prove that the ultrasonic vibration can improve plastics’ tensile strength, elastic modulus and other mechanical properties. As a result, a weldless ultrasound-assisted injection molding method is recommended.


2016 ◽  
Vol 51 (11) ◽  
pp. 1653-1664 ◽  
Author(s):  
Mohd Shahneel Saharudin ◽  
Rasheed Atif ◽  
Islam Shyha ◽  
Fawad Inam

The degradation of mechanical properties in halloysite nanoclay–polyester nanocomposites was studied after an exposure of 24 h in diluted methanol system by clamping test specimens across steel templates. The glass transition temperature ( Tg) and storage modulus increased steadily with the increase of halloysite nanoclays before and after diluted methanol exposure. The addition of nano-fillers was found to reduce liquid uptake by 0.6% in case of 1 wt% reinforcement compared to monolithic polyester. The mechanical properties of polyester-based nanocomposites were found to decrease as a result of diluted methanol absorption. After diluted methanol exposure, the maximum microhardness, tensile, flexural and impact toughness values were observed at 1 wt% of halloysite nanoclay. The microhardness increased from 203 to 294 HV (45% increase). The Young’s modulus increased from 0.49 to 0.83 GPa (70% increase) and the tensile strength increased from 23 to 27 MPa (17.4% increase). The impact toughness increased from 0.19 to 0.54 kJ/m2 in diluted methanol system (184% increase). Surprisingly, the fracture toughness of all types of nanocomposites was found to increase after exposing to diluted methanol due to plasticization effect. Scanning electron microscope images of the fractured surfaces of tensile specimens revealed that the methanol increased the ductility of the matrix and reduced the mechanical properties of the nanocomposites.


2009 ◽  
Vol 5 (3) ◽  
pp. 277-282 ◽  
Author(s):  
E.S. Zainudin ◽  
S.M. Sapuan

Specific responses of thermoplastic components are required when they are subjected to impact conditions to minimize the damage in human body. Hardness property gives material, high resistance to various kinds of shape change when force is applied. In this study, mechanical properties such as impact strength and hardness of banana pseudo‐stem (BPS) unplastisized polyvinyl chloride (UPVC) composites were determined. It was found that fibre loading of BPS filler could enhance the properties of the impact strength and hardness of BPS/UPVC composites. The results on the addition of acrylic modifier to the composites have been discussed.


2020 ◽  
Author(s):  
Sandrine Rosin-Paumier ◽  
Hossein Eslami ◽  
Farimah Masrouri

<p>The incorporation of heat exchangers into geostructures leads to changes in the temperature of the adjacent soil, which may affect its hydro-mechanical properties. In this study, mini-pressiometer tests were carried out in the vicinity of three experimental energy piles of 12 meters length and 0.52-meter diameter installed in saturated sandy soil. Tests were carried out in three locations and in two different depths (namely 3 and 4 meters in depth) before and after cyclic variations of their temperature. The pressuremeter parameters are the pressuremeter modulus EM, the limit pressure PL and the creep-pressure Pf. These parameters characterize the properties of the soils; some measurements were done close to the energy piles (1.25 meters from the center of the pile) using a mini-pressuremeter cell (380 mm in height and 28 mm in diameter). The comparison of the results before and after the four warming-cooling cycles (8° to 19° C) showed a thin thickening of the material at 3 meters depth. These results are coherent with in-lab measurements and with the results of the pile loading tests carried out later on the same site.</p>


2014 ◽  
Vol 566 ◽  
pp. 611-616
Author(s):  
Takeru Watanabe ◽  
Naoya Nishimura ◽  
Hiroka Watanabe ◽  
Syouta Nakadate ◽  
Katsuhiko Murase

When a simple structure collides with inclined barrier, behavior and deformation of the structure after impact are different in the case in which the structure slides on a contact surface or the case in which it does not slide. In order to investigate the structural collapse behavior for oblique collided structure, therefore, it is important to clarify the sliding behavior of the structure on the contact surface. The sliding behavior of the structure during collision was estimated according to theoretically obtained the equation considering the equilibrium of change in the momentum and the impulse before and after the collision. For evaluating the sliding behavior of the simple structure, the impact test by the drop type impact testing machine was carried out to collide with inclined barrier. In the impact test, the circular plate of 60 mm diameter and 10 mm thickness was used as the simple structure, and impacted with various collision velocities (range from 2 to 6 m/s). The sliding behavior of the simple structure at the collided surface was observed by high speed camera, and evaluated by the image analysis. The theoretical result was compared to evaluate with experimental results.


Sign in / Sign up

Export Citation Format

Share Document