Development of Glass-Free Metal Electrically Conductive Thick Films

2000 ◽  
Vol 123 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Zongrong Liu ◽  
D. D. L. Chung

Air-firable glass-free metal electrically conductive thick film pastes of different compositions were developed by using a titanium alloy component, and tin and zinc metal substitutes for glass frit used in traditional thick film pastes. The effect of different components on the electrical resistivity and bonding between the thick film and the alumina substrate was investigated. Thick films with low electrical resistivity and good bonding to the alumina substrate were obtained by using silver, zinc, tin, and TiCu alloy powders in the pastes. The addition of zinc at a small proportion (<0.5 wt.%) to a thick film paste enhanced the adhesion between the thick film and the alumina substrate with negligible increase in the electrical resistivity. The use of titanium alloy powder instead of pure titanium powder is preferred. Better composition distribution, and consequently, better wetting and bonding are expected by using active metal particles of a smaller size.

2016 ◽  
Vol 33 (1) ◽  
pp. 9-14 ◽  
Author(s):  
R.P. Pawar ◽  
Vijaya Puri

Purpose – This paper aims to study the structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) thick-film ceramics. Design/methodology/approach – The thick films of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0) on the alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using an X-ray diffraction method and scanning electron microscopy. The direct current (DC) electrical resistivity is measured using a two-probe method. Microwave absorption was studied in the 8-18 GHz frequency range by using the Waveguide Reflectometer Method. The permittivity and permeability in the 8-18 GHz frequency range were measured by using Voltage Standing Wave Ratio slotted section method. Findings – The thick films have orthorhombic perovskite structure with dominant (020) plane. By using first-principle calculation method, theoretical and experimental lattice parameter and cell volume of (Sr0.6Ca0.4) (CoyMn1−y) O3 are matched with each other. The cobalt content changes the morphology from plates to needles. The DC electrical resistivity increases with increase in Co content and decreases with increase in temperature. (Sr0.6Ca0.4) (CoyMn1−y) O3 thick film shows 75 per cent microwave absorption both in the X band and Ku band. The microwave permittivity and permeability decreases with increase in frequency and Co content. Originality/value – Structural, electrical and microwave properties of (Sr0.6Ca0.4) (CoyMn1−y) O3 (0.2 ≤ y ≤ 1.0). Thick film ceramics on alumina substrate is reported for the first time.


2000 ◽  
Vol 23 (3) ◽  
pp. 163-173 ◽  
Author(s):  
Sunit Rane ◽  
Vijaya Puri

The transmittance and reflectance of microstriplines of different widths, fabricated by thick film and thin film technology are studied in the X and Ku band (8–18 GHz). The fritless thick film Ag pastes with different binder composition was formulated indigenously and screen-printed the microstriplines on alumina substrate. These microstriplines were compared with the microstriplines made from ESL (USA) pastes and also Cu thin film circuits. The effect of line width, composition and firing temperature on the thick film microstriplines was investigated. The transmittance of all the indigenously prepared Ag thick film paste compared well with microstriplines prepared with ESL pastes. All these thick film pastes gave good transmittance upto 18.0 GHz. The results indicate firing at 700℃ gives best films, and also 18 mil or 20-mil line width is more suitable than conventional 25-mil line width if thick films are used for metallization upto 18.0 GHz.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000234-000238 ◽  
Author(s):  
Caroline Jacq ◽  
Thomas Maeder ◽  
Lucas Güniat ◽  
Adrien Corne ◽  
Duccio Testa ◽  
...  

A novel sensor based on thick-film + LTCC (low-temperature cofired ceramic) technology has been recently developed for sensing high-frequency 3D magnetic fields in tokamak fusion devices. For integration within the walls of the tokamak, the sensor has to be connected to the mineral-insulated cabling, which is carried out by brazing to ensure sufficient thermal stability. However, thermal mismatch stresses between the braze and the cable vs. the alumina substrate may cause local cracking of the latter during cooling, as the basic dense silver metallisation of the alumina does not provide a sufficient degree of stress decoupling. To address this issue, a series of porous metallisations have been formulated by incorporation of a mix of silver and fugitive graphite powder into a thick-film paste. To allow co-firing of thick, multi-layered prints. Such porous metallisations have allowed successful brazing operations, without cracking of the alumina substrate. Metallisations were assessed by measuring their electrical resistivity and shear stress have been realised as preliminary results to measure the influence of the porosity on the maximal stress before cracking.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 59
Author(s):  
Deepak Rajaram Patil ◽  
Venkateswarlu Annapureddy ◽  
J. Kaarthik ◽  
Atul Thakre ◽  
Jun Akedo ◽  
...  

Conventional thin-film processing techniques remain inadequate for obtaining superior dense ceramic thick films. The incompatibility of ceramic films prepared via other methods, such as screen printing, spin coating, and sputtering, is a major obstacle in the fabrication of thick film-based ceramic electronic components. The granule spray in vacuum (GSV) processes and aerosol deposition (AD) are important coating approaches for forming dense ceramic thick films featuring nanoscale crystallite structures at room temperature, which offer excellent material properties and facilitate cost-effective production. AD ceramic coatings require the acceleration of solid-state submicron ceramic particles via gas streams with a velocity of a few hundred meters per second, which are then wedged onto a substrate. This process is economical and particularly useful for the fabrication of piezoelectric thick film-based microactuators, energy harvesters, sensors, and optoelectronic devices. More recently, the GSV technique was improved to achieve more uniform and homogeneous film deposition after AD. This review article presents a detailed overview of the AD and GSV processes for piezoelectric thick films in terms of recent scientific and technological applications.


1984 ◽  
Vol 11 (3) ◽  
pp. 219-223 ◽  
Author(s):  
G. Harsányi ◽  
G. Ripka

Modern surface analytical methods/EMPA, AES, SIMS etc. were used for studying the different layers in thick-film integrated circuits. Diffusion and migration effects, surface impurity distributions and surface compositions were examined. Some of the results are presented in this paper. Electrical measurements are not discussed here; only examples of the practical use of the methods are demonstrated.


1992 ◽  
Vol 7 (8) ◽  
pp. 2225-2229 ◽  
Author(s):  
Z.G. Li ◽  
P.F. Carcia ◽  
P.C. Donohue

The microstructure of LaB6-base thick film resistors was investigated by cross-sectional transmission electron microscopy. The specimens were prepared by a technique that polished them to a thin wedge, thus avoiding ion-milling and permitting imaging over a distance of tens of microns. The resistor microstructure contained a finely divided electrically conductive phase of TaB2 and nonconducting crystals of CaTa4O11, formed during high temperature processing of glass and LaB6 ingredients of the thick film ink. Using higher surface area ingredients virtually suppressed the formation of CaTa4O11 crystals, and the microstructure became more uniform. Resistors made with higher surface area intermediates also had better voltage withstanding properties.


Author(s):  
T. Sonoda ◽  
T. Saito ◽  
A. Watazu ◽  
K. Katou ◽  
T. Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document